DocumentCode :
998587
Title :
Scene Segmentation and Semantic Representation for High-Level Retrieval
Author :
Zhu, Songhao ; Liu, Yuncai
Author_Institution :
Inst. of Image Process. & Pattern Recognition, Shanghai Jiao Tong Univ., Shanghai
Volume :
15
fYear :
2008
fDate :
6/30/1905 12:00:00 AM
Firstpage :
713
Lastpage :
716
Abstract :
In this letter, a novel framework to segment video scene and represent scene content is proposed. Firstly, video shots are detected using a rough-to-fine algorithm. Secondly, key frames are selected adaptively, and redundant key frames are removed using template matching. Then, spatio-temporal coherent shots are clustered into the same scene. Finally, under the full analysis of typical characters on continuously recorded videos, video scene content is semantically represented to satisfy human demand on video retrieval. Experimental results show the proposed method makes sense to efficient retrieval of video content of interest.
Keywords :
image matching; image representation; image segmentation; video retrieval; video signal processing; continuously recorded videos; high-level retrieval; rough-to-fine algorithm; scene content representation; semantic representation; spatio-temporal coherent shots; template matching; video retrieval; video scene segmentation; video shots detection; Clustering algorithms; Content based retrieval; Explosions; Graph theory; Gunshot detection systems; Humans; Information retrieval; Layout; Motion pictures; Organizing; Semantic representation; video content analysis; video segmentation;
fLanguage :
English
Journal_Title :
Signal Processing Letters, IEEE
Publisher :
ieee
ISSN :
1070-9908
Type :
jour
DOI :
10.1109/LSP.2008.2002718
Filename :
4682562
Link To Document :
بازگشت