DocumentCode :
999017
Title :
Fast algorithm for computing a primitive 2p+1 pth root of unity in GF[(2p-1)2]
Author :
Reed, I.S. ; Truong, T.K. ; Miller, Robyn L.
Author_Institution :
University of Southern California, Department of Electrical Engineering, Los Angeles, USA
Volume :
14
Issue :
15
fYear :
1978
Firstpage :
493
Lastpage :
494
Abstract :
A Quick method is developed to find an element or order 2p+1p in the finite field GF(q2), where q = 2p-1 is a Mersenne prime. Such an element is needed to implement complex integer transforms of length 2kp over GF(q2) where 3 ≫ k ≪ p + 1.
Keywords :
digital arithmetic; Mersenne prime; complex integer transforms; digital arithmetic; fast algorithm; primitive 2p+1th root of unity;
fLanguage :
English
Journal_Title :
Electronics Letters
Publisher :
iet
ISSN :
0013-5194
Type :
jour
DOI :
10.1049/el:19780331
Filename :
4249491
Link To Document :
بازگشت