Title :
A Bayesian approach for the estimation of model parameters from noisy data sets
Author_Institution :
Dept. of Eng. Sci., Univ. of Oxford, UK
Abstract :
A Bayesian method is proposed for estimating model parameters from noisy data sets. The method is based on maximizing the posterior kernel, which enables priors on the model parameters to be incorporated. The posterior kernel is found by specifying hyperpriors and integrating the priors out, due to the use of conjugate priors. The use of probability models enables simultaneous data streams to be used to maximize the posterior kernel. The solution is found using an iterative scheme. The algorithm´s performance is briefly illustrated using a real data set, demonstrating rapid convergence.
Keywords :
belief networks; iterative methods; parameter estimation; probability; Bayesian method; iterative scheme; model parameter estimation; noisy data set; posterior kernel maximization; Bayesian methods; Iterative algorithms; Kernel; Linearity; Mathematical model; Noise reduction; Parameter estimation; Power system modeling; Probability density function; Robustness; Bayes procedures; parameter estimation;
Journal_Title :
Signal Processing Letters, IEEE
DOI :
10.1109/LSP.2005.849542