Title :
A stochastic method for Bayesian estimation of hidden Markov random field models with application to a color model
Author :
Destrempes, François ; Mignotte, Max ; Angers, Jean-François
Author_Institution :
Dept. d´´Informatique et de Recherche Operationnelle, Univ. de Montreal, Que., Canada
Abstract :
We propose a new stochastic algorithm for computing useful Bayesian estimators of hidden Markov random field (HMRF) models that we call exploration/selection/estimation (ESE) procedure. The algorithm is based on an optimization algorithm of O. Francois, called the exploration/selection (E/S) algorithm. The novelty consists of using the a posteriori distribution of the HMRF, as exploration distribution in the E/S algorithm. The ESE procedure computes the estimation of the likelihood parameters and the optimal number of region classes, according to global constraints, as well as the segmentation of the image. In our formulation, the total number of region classes is fixed, but classes are allowed or disallowed dynamically. This framework replaces the mechanism of the split-and-merge of regions that can be used in the context of image segmentation. The procedure is applied to the estimation of a HMRF color model for images, whose likelihood is based on multivariate distributions, with each component following a Beta distribution. Meanwhile, a method for computing the maximum likelihood estimators of Beta distributions is presented. Experimental results performed on 100 natural images are reported. We also include a proof of convergence of the E/S algorithm in the case of nonsymmetric exploration graphs.
Keywords :
Bayes methods; hidden Markov models; image colour analysis; image segmentation; maximum likelihood estimation; Bayesian estimation; a posteriori distribution; beta distribution; exploration-selection-estimation procedure; global constraints; hidden Markov random field models; image color model; image segmentation; likelihood parameter estimation; maximum likelihood estimators; multivariate distributions; nonsymmetric exploration graphs; region classes; stochastic method; Bayesian methods; Computational modeling; Context modeling; Distributed computing; Hidden Markov models; Image segmentation; Iterative algorithms; Maximum likelihood estimation; Simulated annealing; Stochastic processes; Bayesian estimation of hidden Markov random field (HMRF) models; color model; exploration/selection (E/S) algorithm; image segmentation; maximum likelihood (ML) estimation of Beta distributions; Algorithms; Artificial Intelligence; Bayes Theorem; Color; Computer Simulation; Image Enhancement; Image Interpretation, Computer-Assisted; Imaging, Three-Dimensional; Information Storage and Retrieval; Markov Chains; Models, Statistical; Numerical Analysis, Computer-Assisted; Pattern Recognition, Automated; Signal Processing, Computer-Assisted; Stochastic Processes;
Journal_Title :
Image Processing, IEEE Transactions on
DOI :
10.1109/TIP.2005.851710