در اين پژوهش، يك سيستم بينايي كامپيوتري به منظور بررسي ارتباط بين ويژگي هاي تصويري نمونه هاي مختلف آرد گندم با محتوي خاكستر آنها مورد استفاده قرار گرفت. ويژگي هاي تصويري سطح نمونه هاي آرد شامل شاخص هاي رنگي (L*، a*و b*) و شاخص هاي ماتريس هم-رخداد سطح خاكستري (GLCM) (تباين، انرژي، همبستگي، همگني و انتروپي) بود. نتايج نشان داد شاخص هاي تصويري به استثناي همبستگي، ارتباط خطي معني داري با محتوي خاكستر نمونه ها داشتند. با اين وجود، با توجه به ضرايب تعيين پايين مدلهاي خطي، به منظور برآورد محتوي خاكستر، مدلهاي چندجمله اي درجه دوم به داده ها برازش شد. نتايج آناليز واريانس نشان داد كه مدلهاي درجه دوم برازش شده به استثناي همبستگي، معني دار و ضريب تعيين مدلهاي معني دار به استثناي مدلهاي مربوط به L*، a* و انرژي رضايتبخش (75
چكيده لاتين :
In this study a computer vision system was employed to investigate the relationship between the image
features and ash content of wheat flour. Image features of flour surface included color properties (L*, a*
and b*) and gray level co-occurrence matrix (GLCM) parameters (contrast, energy, correlation,
homogeneity and entropy). Results of correlation analysis revealed that there were significant linear
relationships between image features of surface flour (except for correlation) and their ash content.
However, because of low coefficient of determination (R2) of linear models, quadratic models were fitted
to data in order to predict ash content of wheat flour. Analysis of variance showed that the fitted quadratic
models, except for the correlation, were significant. As well, the R2 values of significant models, except
for L*, a* and energy were satisfactory (R2>0.75). Results of models validation showed that proposed
quadratic models had good performance to predict ash content of new wheat flour samples.