عنوان مقاله :
هدايت مقاوم وسايل بازگشتپذير مبتني بر رگرسيون PLS در حضور عدم قطعيت پارامترهاي ورود
عنوان به زبان ديگر :
Robust Guidance Algorithmfor Reentry Vehicles based on PLS Regression in the Presence ofInitail Parameter Uncertainties
پديد آورندگان :
حسين زاده، عاطفه دانشگاه صنعتي مالك اشتر - مجتمع دانشگاهي هوافضا , آدمي، اميرحسين دانشگاه صنعتي مالك اشتر - مجتمع دانشگاهي هوافضا , ابراهيمي، اصغر دانشگاه صنعتي مالك اشتر - مجتمع دانشگاهي هوافضا
كليدواژه :
رگرسيون حداقل مربعات جزيي (PLS) , رگرسيون , كنترل غيرخطي مرتبة دوم , عدم قطعيت , هدايت مقاوم , هدايت بهينه , وسايل بازگشتپذير
چكيده فارسي :
هدف اين مقاله ارائة يك الگوي هدايت و كنترل بهينه براي وسايل بازگشتپذير است كه در برابر عدم قطعيت در پارامترهاي ورودي مقاوم باشد. روشهاي مختلفي براي طراحي مسير بهينه و يا كنترل بهينة وسايل بازگشتپذير ارائه شده است، ولي تعداد كمي قابليت استفاده بر خط را داراست. روشهايي نيز كه مدعي دارا بودن قابليت استفاده برخط ميباشند، عموماً از سادهسازي و راهحلهاي نزديك بهينه درون خود استفاده نمودهاند. در اين مقاله سعي شده است تا با استفادة تلفيقي از روش كنترل بهينة غيرخطي، روش بهينهسازي الگوريتم ژنتيك و روش رگرسيون حداقل مربعات جزيي، الگوريتمي بهينه و مقاوم براي وسايل بازگشتپذير ارائه شود كه قابليت استفاده برخط را داشته باشد. براساس نتايج استخراج شده، نشان داده ميشود كه با استفاده از اين روش پيشنهادي، در صورت وجود عدم قطعيت در پارامترهاي ورود، ماتريسهاي كنترلي متناسب با هر شرايط اولية جديد استخراج و با استفاده از روش كنترلي غيرخطي كوادراتيك، وسيلة بازگشتپذير با دقت خوبي به سمت هدف هدايت ميشود. نتايج آناليز مونت كارلو نشان ميدهد كه خطاي برخورد نسبت به كنترل بهينة غيرخطي كلاسيك 88% بهبود يافته است.
چكيده لاتين :
The atmospheric re-entry phase is one of the most significantmission steps in the space missions;hence, theguidance and control of reentry vehicles in this phase of mission is important. In this article, a reentry vehicle guidance algorithm has been proposed which has suitable robustness in the presence of initial reentry parameters uncertainties. Here,it has been tried to minimize the landing errors at terminal point using Nonlinear Quadratic Tracking (NQT) and chasing a reference trajectory. In order to define several trajectories with different initial states using evolutionary genetic algorithm with changes in weighting matrices Q and R, it hasbeen tried to reduce the errors of landing at terminal point. The reentry position of the reentry vehicles may be different from the desired ones with respect to several events. In this situation, reentry vehicles start to move in a new trajectory which is not suitable. Therefore, the reentry vehicles should be guided to come back into the desired trajectory or a new optimum trajectory needs to be redesignedto have the same target position on the ground. To do this, we need optimum weighting matrices R and Q for every new trajectory. In this article, this problem has been resolved using partial least squares regression; meanwhile, obtaining the optimal matrices by genetic algorithms needed many times. Also,it is shown that using this method, in the presence of reentry uncertainties, weighting matrices for each new initial condition hasbeen quickly derived. Additionaly,through the matrices obtained and the nonlinear quadratic tracking controller, reentry vehicle was directedto the target with a good accuracy. The Monte Carlo analysis has been used to evaluate the performance of the proposed algoritm. According to the results, the proposed algoritm has a suitable accuracy level and it can generate the online optimum trajectory.
عنوان نشريه :
علوم و فناوري فضايي
عنوان نشريه :
علوم و فناوري فضايي