شماره ركورد :
1011599
عنوان مقاله :
ارزيابي ژنوتيپ هاي گندم نان براي تحمل به خشكي با استفاده از روش تركيبي مناسب
عنوان به زبان ديگر :
Evaluation of Drought Tolerance in Bread Wheat Genotypes using new mixed method
پديد آورندگان :
ياقوتي پور، آنيتا دانشگاه رازي كرمانشاه - پرديس كشاورزي و منابع طبيعي - گروه زراعت و اصلاح نباتات , فرشادفر، عزت الله دانشگاه رازي كرمانشاه - پرديس كشاورزي و منابع طبيعي - گروه زراعت و اصلاح نباتات , سعيدي، محسن دانشگاه رازي كرمانشاه - پرديس كشاورزي و منابع طبيعي - گروه زراعت و اصلاح نباتات
تعداد صفحه :
10
از صفحه :
247
تا صفحه :
256
كليدواژه :
تجزيه به مؤلفه‌هاي اصلي , تنش , ژنوتيپ ايده آل , شاخص‌هاي تحمل , گندم
چكيده فارسي :
اين تحقيق به منظور بررسي امكان كاربرد شاخص انتخاب ژنوتيپ ايده آل براي شناسايي ژنوتيپ هاي متحمل به خشكي با استفاده از شاخص هاي مختلف تحمل به خشكي در مزرعه تحقيقاتي پرديس كشاورزي و منابع طبيعي دانشگاه رازي كرمانشاه در سال زراعي 1392 - 93 انجام شد. در اين پژوهش 20 ژنوتيپ گندم نان در قالب طرح آزمايشي بلوكهاي كامل تصادفي با سه تكرار موردبررسي قرار گرفتند و از دوازده شاخص شامل شاخص حساسيت به تنش (SSI)، تحمل تنش (TOL)، ميانگين بهره وري (MP)، شاخص عملكرد (YI)، شاخص پايداري عملكرد (YSI)، شاخص تحمل تنش (STI)، ميانگين هندسي بهره وري (GMP)، ميانگين هارمونيك (HMP)، شاخص ميانگين هندسي بهرهوري (GMP)، شاخص تحمل تنش تغيير يافته (MISTI) شاخص مقاومت خشكي (DI)، شاخص پاسخ به خشكي (RDI) و همچنين تكنيك شاخص انتخاب ژنوتيپ ايده آل استفاده شد. با استفاده از اين شاخصها و تجزيه به مؤلفه هاي اصلي، ژنوتيپ هاي 1، 12 و 15 به عنوان ژنوتيپهاي متحمل انتخاب شدند. همچنين ژنوتيپ هاي مذكور با مقدار شاخص انتخاب ژنوتيپ ايده آل نزديك به يك نيز جزء ژنوتيپ هاي متحمل بودند. ژنوتيپ 4 نيز با مقدار شاخص انتخاب ژنوتيپ ايده - آل نزديك به صفر به عنوان ژنوتيپ حساس به خشكي شناخته شد. شاخص هاي ميانگين بهره وري، ميانگين هندسي بهره وري، تحمل تنش، ميانگين هارمونيك و KSTI داراي همبستگي مثبت و معني دار با عملكرد دانه در شرايط تنش و عدم تنش بودند، بنابراين بر اساس نتايج اين بررسي، شاخص هاي مذكور به عنوان بهترين شاخصها براي شناسايي ژنوتيپ هاي برتر انتخاب شدند.
چكيده لاتين :
Introduction Selection index of ideal genotype (SIIG) technique, proposed in this paper, is one that is very simple and easy to implement. According to this technique, the best genotype would be the one that has the least deviation from the positive ideal parameter and the most deviation from the negative ideal parameter. The positive ideal parameter is a parameter with maximizes drought tolerance and minimizes drought tolerance, whereas the negative ideal parameter is a parameter with stress susceptibility. In fact, SIIG technique is derived from technique for order preference by similarity to ideal solution (TOPSIS) method (Hwang and Yoon, 1981). If for selection of drought tolerance genotypes, researchers can be used several methods simultaneously, presumably will increase the efficiency of selection (Zali, et al., 2015). SIIG technique that was proposed in this paper is a method that can select drought tolerance genotypes using different procedures. Materials and methods 20 genotypes were tested in randomized complete block design with three replications at the experimental farm of Faculty of Agriculture, Razi University of Kermanshah, Iran in 2014-2015. The SIIG technique is composed of the following steps: Step 1: Construct normalized selection matrix: The normalization of the decision matrix was done using the following transformation for each rij. r= x ∑ x i=1,…,n; j=1,…,m. Where rij is the normalized stability methods or different trait value. D=x x x x x x⋮ ⋮x x x →R =r r r r r r⋮ ⋮r r r Step 2: Determine the positive ideal parameter (maximum stability) and negative ideal parameter (minimum stability) genotypes: The positive ideal and negative ideal parameters are determined, respectively, as follows: A={r,r,…,r} A= maxrj∈Ω ,minr|j∈jΩ Where Ω is the set of maximum stability and Ω is the set of minimum instability. A={r,r,…,r} A= minrj∈Ω ,maxr|j∈jΩ Where Ω is the set of minimum stability and Ω is the set of maximum instability. Step 3: Calculate the segregation measures for each genotype: The two Euclidean distances for each genotype were calculated. The separation of each stability value from the positive ideal parameter is given as: d= (r−r) i=1,…,n Similarly, the separation from the negative ideal parameter is given as: d= (r−r) i=1,…,n Step 4: Calculate the relative closeness to the ideal parameter: The relative closeness (for selection stable genotypes) to the ideal parameters can be defined as: SIIG= d d+d i=1,2…,m, 0≤SIIG≤1. Results and discussion Twelve drought tolerance indices includingmodified stress tolerance index(MSTI), yield stability index(YSI), yield index(YI), stress susceptibility index(SSI), stress tolerance index(STI), tolerance index(TOL), geometric meanproductivity(GMP),harmonic mean(HAM), mean productivity(MP), drought resistance index(DI), relative drought index(RDI) and also selection index of ideal genotype were calculated. Using these indicators and priniciple component analysis genotypes 1, 12 and 15 were selected as tolerant genotypes. It is also 1, 12 and 15 genotypes with the highest selection index of ideal genotype values, near to one was accepted drought tolerance genotype, also 4 genotype with the lowest selection index of ideal genotype value, near to zero was accepted drought susceptible. The results were the same in different ways. Modified stress tolerance index, harmonic mean, mean productivity, stress tolerance index and geometric meanproductivity the harmonic mean and K1STI significant positive correlation with yield in stress and non-stress conditions were therefore the best indices to identify superior genotype. Conclusion The selection index of ideal genotype (SIIG) is a selective model and is used to select the most suitable genotype among genotypes in different environments. Using the SIIG method, drought tolerance indexes, different stability parameters or different traits can be determined as a single index, and the selection of superior genotypes is made more reliable and accurate.
سال انتشار :
1396
عنوان نشريه :
تنشهاي محيطي در علوم زراعي
فايل PDF :
7455717
عنوان نشريه :
تنشهاي محيطي در علوم زراعي
لينک به اين مدرک :
بازگشت