شماره ركورد :
1017919
عنوان مقاله :
توسعه سامانه مكاترونيكي بلادرنگ سنجش استرس، مبتني بر سيگنال‌هاي حياتي
عنوان به زبان ديگر :
Development of a Mechatronics System to Real-Time Stress Detection Based on Physiological Signals
پديد آورندگان :
گل‌گونه ،عليرضا دانشگاه تهران -دانشكده علوم و فنون نوين , تارويردي‌زاده ،بهرام دانشگاه تهران -دانشكده علوم و فنون نوين
تعداد صفحه :
16
از صفحه :
59
تا صفحه :
74
كليدواژه :
شبكه فازي-عصبي تطبيقي , شبكه‌ عصبي مصنوعي , هدايت الكتريكي پوست , فتوپلتيسموگرافي , سيگنال‌هاي حياتي
چكيده فارسي :
متر كسي در دنياي پرتلاطم و پرتنش امروز، با واژه استرس بيگانه است؛ بهطوريكه در برخي مواقع، استرس تبديل به بخشي از زندگي انسان شده‌است. استرسِ بيش از حد، باعث بروز مشكلاتي مي‌شود كه علاوه­بر اثرات رواني، پيامدهاي جسمي بي‌شماري از جمله سكته‌هاي مغزي، قلبي، فشارخون و غيره را دارد و هيچ عضو يا ارگاني از بدن انسان از تأثيرات آن در امان نيست. هدف اين پژوهش، طرّاحي و ساخت دستگاهي است كه با استفاده از سيگنالهاي هدايت الكتريكي پوست (GSR) و فتوپلتيسموگرافي (PPG) بتواند ميزان استرس فرد را به‌صورت شاخص پيوسته بيان كند. سختافزار اين دستگاه مبتني بر پردازنده ARM و رابط كاربري آن با زبان C++ برنامه‌نويسي شده‌است. به‌منظور سنجش ميزان استرس، الگوسازي با استفاده از شبكه عصبي مصنوعي MLP و شبكه فازي-عصبي تطبيقي (ANFIS) انجام، كه در بهترين حالت در الگوسازي با ANFIS، دقت %91/92، و ميانگين خطاي 007/0 حاصل شده‌است.
چكيده لاتين :
Stress has affected human’s lives in many areas, today. Stress can adversely affect human’s health to such a degree as to either cause death or indicate a major contributor to death. Therefore, in recent years, some researchers have focused to developing systems to detect stress and then presenting viable solutions to manage this issue. Generally, stress can be identified through three different methods including (1) Psychological Evaluation, (2) Behavioral Responses and finally (3) Physiological Signals. Physiological signals are internal signs of functioning the body, and therefore nowadays are commonly used in various medical and non-medical applications. Since these signals are correlated with the stress, they have been commonly used in detection of the stress in humans. Photoplethysmography (PPG) and Galvanic Skin Response (GSR) are two of the most common signals which have been widely used in many stress related studies. PPG is a noninvasive method to measure the blood volume changes in blood vessels and GSR refers to changes in sweat gland activity that are reflective of the intensity of human emotional state. Design and fabrication of a real-time handheld system in order to detect and display the stress level is the main aim of this paper. The fabricated stress monitoring device is completely compatible with both wired and wireless sensor devices. The GSR and PPG signals are used in the developed system. The mentioned signals are acquired using appropriate sensors and are displayed to the user after initial signal processing operation. The main processor of the developed system is ARM-cortex A8 and its graphical user interface (GUI) is based on C++ programming language. Artificial Neural Networks such as MLP and Adaptive Neuro-Fuzzy Inference System (ANFIS) are utilized to modeling and estimation of the stress index. The results show that ANFIS model have a good accuracy with a coefficient of determination values of 0.9291 and average relative error of 0.007.
سال انتشار :
1397
عنوان نشريه :
پردازش علائم و داده ها
فايل PDF :
7500381
عنوان نشريه :
پردازش علائم و داده ها
لينک به اين مدرک :
بازگشت