شماره ركورد :
1017931
عنوان مقاله :
پيش‌بيني و تعيين عوامل مؤثر بر بقاي پنج‌سالۀ كليۀ پيوندي در داده‌هاي نامتوازن با رويكرد فراابتكاري و يادگيري ماشين
عنوان به زبان ديگر :
Prediction and determining the effective factors on the survival transplanted kidney for five-year in imbalanced data by the meta-heuristic approach and machine learning
پديد آورندگان :
امامي ،نسيبه دانشگاه كوثر بجنورد , حسني، زينب دانشگاه كوثر بجنورد
تعداد صفحه :
10
از صفحه :
85
تا صفحه :
94
كليدواژه :
نزديك‌ترين همسايگي , الگوريتم ژنتيك , داده‌هاي نامتوازن , پيوند كليه
چكيده فارسي :
در مرحلۀ نهاييِ نارسايي كليه، پيوند كليه مي­تواند عمر بيماران را طولاني كند و كيفيت زندگي بيمار را بسيار بهبود بخشد. بعد از عمل پيوند كليه، بررسي ميزان يا پيش­بيني بقاي كليۀ پيوندي اهميت زيادي دارد. اين مطالعه بر روي بيماران كليۀ پيوندي بيمارستان‌­هايامام رضا(ع) و چهارمين شهيد محراب كرمانشاه در سال­هاي 2012- 2001 انجام شده است. از آن­جايي‌كه داده­هاي نامتوازن باعث ناكارامدي مدل­هاي يادگيري ماشين مي­شوند، ابتدا داده­هاي نامتوازن با دو روش بيش‌­نمونه‌­برداري و زير­نمونه­برداري متوازن شدند؛ سپس عوامل اثرگذار بر بقاي پيوند كليه به­كمك الگوريتم فراابتكاري ژنتيك شناسايي شده و مدل يادگير طبقه­بند نزديك­ترين همسايه براي پيش­بيني بقاي پنج سالۀ كليۀ پيوندي به‌كار گرفته شد. بقاي كليۀ پيوندي در روش بيش­نمونه­برداري با دقّت 8/96 درصد و زير­نمونه­برداري با دقّت 2/89 درصد پيش­بيني شد. هم‌چنين، ويژگي­هاي وزن، سنِّ دهنده و گيرنده، اورۀ قبل پيوند، كراتين قبل پيوند، هموگلوبين قبل و بعد پيوند، جنسيتِ دهنده، RH دهنده و گيرنده، بيماري اوليه، سنِّ دهندۀ بالاي سي و سنِّ گيرندۀ بالاي چهل، به­عنوان ويژگي­هاي تأثيرگذا­ر ­در بقاي كليه پيوندي شناسايي شد. مقايسه نتايج به‌دست­آمده از اين پژوهش با مطالعات پيشين، برتري مدل پيشنهادي را از نقطه­نظر دقّت مدل نشان مي­دهد. به­عبارتي متوازن­سازي داده­ها همراه با انتخاب ويژگي­ بهينه منجر به ارائه مدل پيش­بيني دقيق­تري مي‌شود.
چكيده لاتين :
Chronic kidney failure is one of the most widespread diseases in Iran and the world. In general, the disease is common in high health indexes societies due to increased longevity. Treatment for chronic kidney failure is dialysis and kidney transplantation. Kidney transplantation is an appropriate and effective strategy for patients with End-Stage Renal Disease (ESRD), and it provides a better life and reduces mortality risk for patients. In contrast to many benefits that kidney transplantation has in terms of improving physical and mental health and the life’s quality in kidney transplantation patients, it may be rejected because of host's immune response to the received kidney, and it consequences the need for another transplantation, or even death will have to. In fact, a patient that can survive for years with dialysis, he may lose his life with an inappropriate transplantation or be forced into high-risk surgical procedures. According to the above, the study of predicting the survival of kidney transplantation, its effective factors and providing a model for purposing of high prediction accuracy is essential. Studies in the field of survival of kidney transplantation include statistical studies, artificial intelligence and machine learning. In all of the studies in this feild, researchers have sought to identify a more effective set of features in survival of transplantation and the design of predictive models with higher accuracy and lower error rate. This study carried out on 756 kidney transplant patients with 21 features of Imam Reza and Fourth Shahid Merab hospital in Kermanshah from 2001 to 2012. Some features set to binary value and other features have real continuous values. Due to data are unbalance, which led to convergence of classification model to majority class, so over sampling and under sampling techniques has been used for achieving higher accuracy. To identify the more effective features on the survival of the kidney transplantation, the genetic meta-heuristic algorithm is used. For this purpose binary coding for each chromosome has been used; it is combining three single-point, two-point, and uniform operators to make better generations, better convergence and achieve higher accuracy rate. The genetic search algorithm plays a vital role in searching for such a space in a reasonable time because data search space is exponential. In fact, in balanced data, genetic algorithm determines the effective factors and the K-nearest neighbor model with precision of classification as the evaluator function was used to predict the five-year survival of the kidney transplantation. Based on the results of this study, in comparison to similar studies for prediction of survival transplanted kidney, the five-year survival rate of transplanted kidney was appropriate in these models. Also the effective factors in over sampling and under sampling methods with a precision of 96.8% and 89.2% are obtained respectively. in addition weight, donor and recipient age, pre-transplantation urea, pre-transplantation creatinine, hemoglobin before and after transplantation, donor gender, donor and recipient RH, primary illness, donor age up 30 and receipt age up 40 were identified as the effective features on kidney transplantation survival. Comparing the results of this study with previous studies shows the superiority of the proposed model from the point of view of the models' precision. In particular, balancing the data along the selection of optimal features leads to a high precision predictive model.
سال انتشار :
1397
عنوان نشريه :
پردازش علائم و داده ها
فايل PDF :
7500393
عنوان نشريه :
پردازش علائم و داده ها
لينک به اين مدرک :
بازگشت