شماره ركورد :
1049165
عنوان مقاله :
مدل سازي رفتار سخت شدگي كششي اعضاء بتن مسلح اليافي
عنوان به زبان ديگر :
Tension Stiffening Modeling of Steel Fiber Reinforced Concrete
پديد آورندگان :
كامراني راد، رضا دانشگاه تربيت مدرس , سلطاني محمدي، مسعود دانشگاه تربيت مدرس - دانشكده مهندسي عمران و محيط زيست
تعداد صفحه :
12
از صفحه :
191
تا صفحه :
202
كليدواژه :
بتن اليافي , رفتار سخت شدگي كششي , الياف فولادي , مدل رفتاري متوسط
چكيده فارسي :
افزودن الياف به بتن مسلح، باعث ايجاد تغييراتي در سازوكارهاي انتقال تنش بر روي سطح ترك مي ‍شود كه از مهمترين آنها مي توان به تغيير سازوكار انتقال كشش و برش اشاره نمود. پس از ايجاد ترك در نمونه ، علاوه بر آرماتور، الياف نيز دو سطح ترك را به هم متصل كرده و در انتقال تنش كششي بين دو صفحه ي ترك موثر هستند. اين موضوع باعث افزايش ظرفيت كششي بتن و كاهش فواصل ترك ها در نمونه خواهد شد. در اين مطالعه، رفتار نمونه هاي بتن اليافي داراي آرماتور تحت كشش خالص به صورت تحليلي مدل سازي شده است. به منظور مدل سازي اين رفتار، سازوكارهاي موثر بر رفتار كششي نمونه نظير مدل رفتاري آرماتور، مدل رفتاري بتن تحت كشش، مدل انتقال تنش پيوند بتن و آرماتور و همچنين مدل رفتاري الياف فولادي مستقيم و قلابدار تحت كشش در نظر گرفته شده است و با استفاده از يك الگوريتم عددي و روش حل تكراري و با فرض توزيع يكنواخت و تصادفي براي موقعيت و زاويه ي الياف در نمونه، منحني افزايش طول-ظرفيت باربري كششي نمونه تحت كشش خالص محاسبه مي شود. با مقايسه نتايج تحليلي و آزمايشگاهي، مي توان گفت كه نتايج تحليل ها انطباق مناسبي با نتايج آزمايشگاهي دارد و به نظر مي رسد فرضيات در نظر گرفته شده داراي دقت مناسبي هستند. در انتهاي اين مطالعه، به منظور بررسي كارايي مدل، اثر افزودن الياف بر روي رفتار تنش كرنش متوسط آرماتور، رفتار سخت شدگي كششي ناشي از بتن و همچنين تاثير الياف بر روي فاصله ترك هاي ايجاد شده در نمونه بررسي شده است.
چكيده لاتين :
Adding steel fibers to reinforced concrete improves the active mechanisms on crack surface including tension and shear transfer mechanisms. In Steel Fiber Reinforced Concrete (SFRC), tensile stresses are developed in fibers and deformed reinforcing bars just after crack initiation. With this beneficial effect, concrete tensile strength is improved and crack spacing decreases. In this research, SFRC member behavior is analytically investigated under pure tension and in order to verify the model, the results are compared with some recent experimental results. From the viewpoint of constitutive modeling of RC elements, there are two main approaches, discrete crack and continuum level models. The major disadvantage that adheres to discrete crack models is the fact that these models focus on the local crack behavior and seek to detect the crack paths, which of course requires a high computational cost. By contrast, continuum level models take advantage of the spatially averaged models between two primary transverse cracks. In a process of developing average constitutive models, it is important to model local mechanisms, these mechanisms in a reinforced concrete domain are related to initiation and propagation of cracks. In this article, the tension stiffening model is developed considering all effective local stress transfer mechanisms including tension behavior of deformed bar, fibers pullout, tension softening of plain concrete and bond slip-stress between the reinforcing bar and concrete matrix. Straight and end hooked fibers have different mechanisms during pullout such as debonding, friction and mechanical anchorage of end hooked fibers. To predict the fiber tensile behaviors, it is necessary to define fiber stress transfer mechanism on the crack surface. The most important parameters that affect fibers behavior are material properties, size and geometry, distribution and orientation of fibers. The model used in this research considers a uniform random distribution for fiber’s geometrical location and inclination angle. In this model, the slip occurred in the fiber is considered on both sides of fiber embedded in concrete. The bond slip- stress behavior of straight fiber is defined as linear before the bond stress reaches to the bond strength, then the bond stress is considered constant until the complete pullout. In end-hooked fibers, in addition to debonding and friction, the end mechanical anchorage of the fiber has also an important effect on the bearing capacity. In fact, in the process of fiber pullout, hooked part of fiber most have plastic deformation. To simulate it, a parabolic model is used. In order to solve the algorithm, an iterative analysis method is applied to calculate tension stress-elongation of specimen. To increase the accuracy of the model, the local yielding of reinforcing bars and matrix damage at the crack surface are also numerically simulated. Model verification is carried out by comparing the computational predictions with available experimental results. The results show good agreement with the test results. The proposed model is also shown to be useful in considering the effect of various percentages of fibers on average stress-strain behavior of deformed bar, total load elongation of specimen, crack spacing and concrete tension stiffening. By increasing fiber percentage, crack spacing will decrease so the average stress- strain behavior of deformed rebar becomes more similar to the bare bar.
سال انتشار :
1396
عنوان نشريه :
مهندسي عمران مدرس
فايل PDF :
7575946
عنوان نشريه :
مهندسي عمران مدرس
لينک به اين مدرک :
بازگشت