شماره ركورد :
106166
عنوان مقاله :
در بازشناسي گفتار FT و مقايسه آن با درون يابي RNNGI ارايه درون يابي
عنوان به زبان ديگر :
Presentation of K Nearest Neighbor Gaussian Interpolation and Comparing it with Fuzzy Interpolation in Speech Recognition
پديد آورندگان :
صياديان ، ابوالقاسم نويسنده ,
اطلاعات موجودي :
دوفصلنامه سال 1383
رتبه نشريه :
علمي پژوهشي
تعداد صفحه :
10
از صفحه :
1
تا صفحه :
10
كليدواژه :
مهندسي , درون يابي گوسي , درون يابي فازي , بازشناسي گفتار , مدل ماركف مخفي چگالي گسسته , Gaussian Interpolation , Discrete Density HMM , Discrete utterance recogntion , Fuzzy Interpolation
چكيده لاتين :
Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very high, especially in very large discrete utterance recognition problems. For real time Implementation of very large discrete utterance recognition, we must use discrete density HMM (DDHMM). To increase the performance of DDHMM, one usual solution is fuzzy interpolation. In this study, we present a new method named Gaussian interpolation. We implemented and compared the performance of two types of interpolation methods for 1500 Persian speech command words. Results show that precision and flexibility of Gaussian interpolation is better thanthose of the fuzzy interpolation.
سال انتشار :
1383
عنوان نشريه :
استقلال
عنوان نشريه :
استقلال
اطلاعات موجودي :
دوفصلنامه با شماره پیاپی سال 1383
كلمات كليدي :
#تست#آزمون###امتحان
لينک به اين مدرک :
بازگشت