شماره ركورد :
1069046
عنوان مقاله :
مطالعه تحليلي ارتعاش عرشه‌هاي پلهاي فولاي - frp تحت جرم متحرك
عنوان به زبان ديگر :
Analytical study of steel-FRP bridges vibration subjected to moving mass
پديد آورندگان :
جعفري حامد دانشگاه تربيت مدرس , خضرزاده حامد دانشگاه تربيت مدرس - دانشكده مهندسي عمران و محيط زيست
تعداد صفحه :
14
از صفحه :
57
تا صفحه :
70
كليدواژه :
كامپوزيت هاي frp , جرم متحرك و عرشه پل , سرعت بحراني موثر , ضريب تشديد ديناميكي
چكيده فارسي :
نظر به اهميت كليدي پلها در شريان هاي حياتي سيستم حمل ونقل و با توجه به هزينه بالاي ساخت آن ها، نياز به مطالعه و بررسي اين سازه ها و به روزرساني آن ها همواره احساس مي شود. امروزه كامپوزيت هاي frp با توجه به خواص ويژه اي كه دارند، مي توانند گزينه مناسبي براي عرشه پل ها باشند. در اين مطالعه اثر مربوط به حركت جرم متحرك بر پاسخ ديناميكي پلهاي فولادي frp و فولاديبتني موردبررسي قرارگرفته است. اينرسي ايجاد شده در جرم متحرك و همچنين جرم واحد طول عرشه ، اثرات قابل توجهي بر پاسخ هاي ديناميكي دارند. در ابتدا روش mlb براي مدلسازي خواص تيرهاي frp و مساله جرم متحرك با نتايج آزمايشگاهي صحت سنجي شده اند. در ادامه حل مسئله جرم متحرك براي پلهاي فولادي frp و فولادي بتني صورت پذيرفته است. نتايج حاصل از اين پژوهش بيانگر اين امر هستند كه ميزان جرم عرشه و سختي آن تاثير قابل ملاحظه بر پاسخ تحت اثر عبور جرم متحرك دارد. سرعت بحراني موثر (cis) و ضريب تشديد ديناميكي (daf) محاسبه شده در موارد مختلف بيانگر تاثيرپذيري به مراتب پايين تر پلهاي فولاديfrp از عبور جرم متحرك هستند. تاثير كمتر پل نسبت به عبور بار متحرك باعث دامنه نوساني پايينتر و درنتيجه عمر خستگي بالاتر مجموعه پل خواهد شد. اين رو پلهاي فولاديfrp گزينه مناسبي در سيستمهاي حمل و نقل معمولي و سرعت بسيار بالا هستند.
چكيده لاتين :
Given the key importance of the bridges in transportation system lifelines and due to their high initial cost, there is a constant need for the study and monitoring of such structures. The FRP composites, due to their special characteristics including high specific modulus, high specific strength, corrosion resistance, low mass density, and modular construction, can be a good alternative for common bridge deck systems. Too much effort is devoted to implement FRP materials as a whole or in part in bridge construction. There have been several different methods of using FRP materials in bridges, including FRP stay-in-place forms for concrete decks and whole FRP bridge decks. Bridges constantly bear moving mass loads while due to technological progress the moving speeds are approaching higher and higher thresholds, so in this study, effects of moving mass on the dynamic response of steel-FRP and steel-concrete bridges are studied and compared. The deck and moving mass inertia substantially affect the dynamic response of the bridge system. To compare the effect of moving mass on both bridge types, at first, the multi layered beam method (MLB) for determining the FRP beam characteristics is reviewed and its applicability on determining the mechanical properties of laminated beams is investigated through comparison of this method results with numerical and experimental data. It is shown that by using the MLB method very good estimates of the mechanical properties of FRP composite can be achieved. Consequently, the problem of moving mass and its governing differential equations is reviewed and the numerical procedure for solving the set of governing PDEs of the moving mass problem is verified against experimental data. Comparing the theoretical results with the experimental data reveals that the presented methodology correctly estimates the dynamic response of beams subjected to moving masses. After setting up the theoretical framework for the moving mass problem on steel-FRP bridges, the effect of moving mass loading on the dynamic response of steel-FRP and steel-concrete bridge systems is investigated. The results indicate that the mass per length and the stiffness of the deck significantly affect the response of the bridge subjected to moving mass. These effects are captured through two different main parameters which characterize the dynamic behavior of beams subjected to moving masses. The first parameter is the Critical Influential Speed (CIS) at which the maximum deflection of deck at certain location happens. The calculated CIS through the aforementioned methodology indicate that the CIS for steel-FRP system is significantly higher than steel-concrete system. The second important parameter which is determined is the Dynamic Amplification Factor (DAF) which is defined as the ratio of maximum dynamics deflection at the midspan of the beam to its static value. The corresponding results of the DAF indicate that the steel-FRP bridges are less influenced by the moving masses than steel-concrete bridges of the same stiffness. It is shown that the values of DAF are lower in the case of steel-FRP bridge. It can be concluded that this will result in lower vibration amplitudes, which will contribute to higher fatigue life of the bridge system. Regarding these results, this system can be advised in the cases of high and ordinary speed transportation.
سال انتشار :
1397
عنوان نشريه :
مهندسي عمران مدرس
فايل PDF :
7606378
عنوان نشريه :
مهندسي عمران مدرس
لينک به اين مدرک :
بازگشت