شماره ركورد :
1075183
عنوان مقاله :
پهنه‌بندي رطوبت خاك سطحي با استفاده از تصاوير لندست 8 (مطالعه موردي: حومه شهر سمنان)
عنوان به زبان ديگر :
Mapping the Moisture of Surface Soil Using Landsat 8 Imagery (Case study: Suburb of Semnan City)
پديد آورندگان :
كوه بناني، حميدرضا دانشگاه سمنان - بيابان‌زدايي، سمنان , يزداني، محمدرضا دانشگاه سمنان - بيابان‌زدايي، سمنان
تعداد صفحه :
13
از صفحه :
65
تا صفحه :
77
كليدواژه :
سنجش‌ازدور , شاخص گياهي , مدل­هاي رگرسيون چندمتغيّره , لندست , شاخص رطوبت خاك
چكيده فارسي :
پايش رطوبت سطحي خاك، به‌عنوان عامل مهم در چرخة آب و انرژي در مديرت منابع آب‌وخاك بسيار مهم تلقّي مي‌شود. اين فاكتور مهم، به­دليل تغييرپذيري ويژگي‌هاي خاك، توپوگرافي، پوشش گياهي و پويايي آب‌وهوا در زمان و مكان، به‌شدّت تغيير مي­كند. رطوبت خاك اثر فوري روي رواناب، فرسايش خاك و توليد گياهان دارد؛ همچنين عامل مهم در رشد گياهان محسوب مي­شود؛ از طرفي كاهش رطوبت خاك، عاملي براي افزايش ريزگردها در مناطق بياباني محسوب مي­شود. روش‌هاي سنجش‌ازدور قادرند اطّلاعات رطوبت خاك را در گسترة وسيع با فواصل زماني كوتاه، با دقّت قابل قبول ارائه دهند. در پژوهش حاضر با استفاده از دادة ماهوارة لندست 8، روش‌هاي مختلف برآورد رطوبت سطحي خاك مورد آزمون قرار گرفت. به‌منظور ارزيابي دقّت هركدام از روش‌ها، از داده­هاي ميداني واقعي استفاده شد. 80 نمونه از رطوبت حجمي خاك سطحي در مناطق حومة سمنان در تاريخ گذر ماهواره از منطقه گرفته شد. برخي شاخص‌هايي كه در اين پژوهش استفاده شد عبارت‌اند از شاخص گياهي تفاضلي نرمال­شده، شاخص تفاضلي نرمال­شدة كشاورزي، شاخص تفاضلي نرمال­شدة رطوبت، شاخص عمودي رطوبت خاك، دماي سطح و شاخص رطوبت خاك باند كوتاه مادون قرمز. در گام بعدي، با استفاده از مدل­هاي رگرسيوني چندمتغيّره اقدام به تهيّة مدل رطوبت خاك سطحي با استفاده از شاخص‌هاي مورد مطالعه شد. شاخص رطوبت خاك باند كوتاه مادون قرمز با ضريب همبستگي 78/0 و ضريب تبيين مدل رگرسيوني 61/0 شاخص مناسبي براي پهنه‌بندي رطوبت سطحي خاك در مناطق خشك و بياباني ارزيابي گرديد. سه شاخص رطوبت خاك باند كوتاه مادون قرمز، شاخص تفاضلي نرمال­ شدة كشاورزي و شاخص تفاضلي نرمال‌شدة رطوبت با تفاوت اندك، شاخص­هاي مناسبي هستند. يافته‌هاي اين پژوهش نشان از برتري مدل رگرسيوني هم‌زمان در تهيّة نقشة رطوبت خاك سطحي دارد.
چكيده لاتين :
Monitoring soil surface moisture, as a crucial factor in water and energy cycles, is of great importance in water and soil resource management. This important factor varies dramatically in time and space due to variability in soil characteristics, topography, vegetation, and dynamic nature of the climate. Any change in soil moisture can have an immediate effect on runoff, soil erosion, and plant productivity. Soil moisture is considered as a decisive factor in plant growth. Moreover, a decrease in soil moisture results in an increase in the dust of desert regions. Remote sensing methods can provide continuous soil moisture information on a large scale with acceptable accuracy. In the current study, applying data from Landsat 8 satellite image, different soil surface moisture estimation methods were studied. In order to assess the precision of each method, 80 samples of volumetric soil surface moisture were taken from the vicinity of Semnan province on the exact date the satellite passed over the region. Some of the applied indices in the study are NDVI, NDTI, NDMI, PSMI, Surface Temperature, and SMSWIR index. SMSWIR index, with a correlation coefficient of 0.88 and R2 of 0.61 was considered as the suitable index for soil moisture zonation in arid and desert areas. Therefore, SMSWIR can be an appropriate indicator for soil surface moisture in arid and semi-arid regions. SMSWIR , NDTI and NDMI indices could be considered as appropriate indicators for soil surface moisture in desert regions with poor vegetation. In the next step, using multivariate regression models, we prepared a soil moisture model using the studied indices. The findings of this study illustrated that Enter regression model has higher accuracy in surface soil moisture mapping.Extended Abstract 1-Introduction Monitoring soil surface moisture, as a crucial factor in water and energy cycles, is of great importance in water and soil resource management. Many soil properties such as stability, compressibility, permeability, and ability to transfer are function of moisture content in the soil. This variable is used to calculate the water balance of the area, Plant water requirement, and desertification studies. This important factor varies dramatically in time and space due to variability in soil characteristics, topography, vegetation, and dynamic nature of the climate. Any change in soil moisture can have an immediate effect on runoff, soil erosion, and plant productivity. Soil moisture is considered as a decisive factor in plant growth. Moreover, a decrease in soil moisture results in an increase in dust in desert regions. Continuous measurement of soil moisture is very costly and time-consuming, and the spatial range of measurement is generally limited. Remote sensing methods can provide continuous soil moisture information on a large scale with acceptable accuracy. 2-Materials and Methods In the current study, applying data from Landsat 8 satellite, different soil surface moisture estimation methods were studied. In order to assess the precision of each method, real time field data were also collected and used. Due to the fact that the soil surface moisture is severely affected by daily evapotranspiration, wind, and airflows, 80 samples of volumetric soil surface moisture were taken from the vicinity of Semnan city on the exact date the satellite passed over the region. Measurement of moisture in the laboratory was carried out by direct method. Some of the applied indices in the study are Normalized differential vegetation index, normalized differential tillage Index, normalized differential moisture index, perpendicular soil moisture index, surface temperature, and SMSWIR index. Calculating the Pearson coefficient and the coefficient of determination of each of the above indices, the most correlated indices were used to measure soil moisture content. In the next step, the soil moisture estimation functions were calculated using the correlated indices by three methods of Partial least squares regression, Stepwise and Enter method. Considering the high correlation coefficient of the Enter method and the low RMSE compared to the other two methods, regression model of Enter can be used to model the soil moisture zonation in the studied area. 3-Results and Discussion The results of the study revealed that in desert regions with low vegetation, using short-wavelength infrared bands showed a higher level of correlation with the field data. Among the proposed methods, surface temperature did not show a high correlation with data on moisture. This indicates that thermal bands are affected by other factors besides soil moisture. Thus, perpendicular soil moisture index cannot offer acceptable accuracy as it relies heavily on surface temperature. SMSWIR index, with correlation coefficient of 0.78, presents a slight difference compared to normalized differential tillage indices and normalized differential vegetation index. This index’s square regression value was 0.61, and the root-mean-square error for the regression model results and actual data were estimated to be 3.69. The root-mean-square error for the regression model resulting from normalized differential tillage index, normalized differential moisture index and normalized differential vegetation index and the actual data was 3.77 and 4, respectively. Therefore, Soil moisture of Short-wavelength infrared bands (SMswir) and normalized differential tillage index and normalized differential moisture index could be an appropriate indicator for soil surface moisture in desert regions with poor vegetation. In the next step, using normalized differential tillage indices, normalized differential moisture index, normalized differential vegetation index, short-wavelength infrared moisture index and surface temperature index, regression model of these variables were prepared. Regarding the low root mean square error and the high coefficient of explanation of the Enter model among other multivariate regression methods, this model has a good accuracy for soil surface moisture zonation at 5% level. 4-Conclusion Our study illustrated that the short-wavelength infrared bands of Landsat 8 show more sensitivity to soil moisture changes than near-infrared bands. In this paper, the efficiency of reflective and thermal bands of Landsat 8 for monitoring of surface soil moisture was confirmed. The research was done in a desert region in Semnan. As a result, the reliability of proposed methods in regions with higher vegetation and forests must be evaluated again.
سال انتشار :
1397
عنوان نشريه :
جغرافيا و پايداري محيط
فايل PDF :
7659503
عنوان نشريه :
جغرافيا و پايداري محيط
لينک به اين مدرک :
بازگشت