شماره ركورد :
1079684
عنوان مقاله :
جداسازي آنومالي‌هاي ژئوشيميايي سرب و روي با استفاده از روش‌هاي آمار كلاسيك، مولتي‌فركتال عيار-تعداد، عيار-مساحت و شاخص سينگولاريتي در ورقه 1:100000 اراك
عنوان به زبان ديگر :
Discrimination of Pb and Zn geochemical anomalies using classical, multifractal (C-N) and (C-A) and singularity index statistical methods in Arak 1:100000 sheet
پديد آورندگان :
كنعانيان، علي دانشگاه تهران - دانشكده علوم , جعفري، محمد امين دانشگاه تهران - دانشكده علوم , نظرپور، احد دانشگاه آزاد اسلامي اهواز - گروه زمين شناسي
تعداد صفحه :
12
از صفحه :
63
تا صفحه :
74
كليدواژه :
اراك , سرب و روي , شاخص سينگولاريتي , آنومالي زمين‌شيميايي , فركتال
چكيده فارسي :
ورقه زمين شناسي 1:100000 اراك در بخش شمالي كمربند فلززايي سرب و روي ملاير-اليگودرز-اصفهان واقع شده است. داده هاي زمين شيمي 898 نمونه از رسوبات آبراهه اي منطقه مورد نظر كه توسط روش ICP-MS تهيه شده اند مورد تحت تجزيه و تحليل قرار گرفت. ابتدا از طريق روش آمار كلاسيك و MAD با محاسبه پارامترهاي آماري به جداسازي جوامع زمين شيميايي پرداخته شد. پس از آن با استفاده از روشهاي فركتالي عيار-تعداد و عيار-مساحت و همچنين با استفاده از روش سينگولاريتي آنوماليهاي زمين شيميايي دو عنصر سرب و روي در منطقه مورد مطالعه تفكيك شدند. روش فركتال عيار-مساحت نشان داد كه مقدار كمينه و بيشنيه عيار براي عنصر سرب به ترتيب 64/15 ppm و 100 ppm و براي عنصر روي 63/09 ppm و 251 ppm ميباشد. بطور كلي نتايج اين روشها نشان داد كه عيار عنصر سرب در جنوب غرب و عيار عنصر روي در شمال شرق و جنوب محدوده افزايش پيدا ميكند و در ان مناطق احتمال وجود مناطق اميدبخش كانساري بسيار بالا است و از طرفي نيز بيانگر اين مسأله بود كه آنومالي بدست آمده براي فلزات سرب و روي انطباق خوبي با واحدهاي آهكي منطقه مورد مطالعه نشان ميدهند.
چكيده لاتين :
1-Introduction Separation of geochemical anomalies from background has always been a significant concern of exploration geochemistry. The search for methods that can make this analysis quantitative and objective aims not only at the reduction of subjectiveness but also at providing an automatic routine in exploration, assisting the interpretation and production of geochemical maps (Nazarpour et al., 2016). Arak 1:100000 geological sheet is located in the north of Malayer-Aligoudarz-Efsahan Pb-Zn metalogenic belt, so this sheet has been studied. In this study, we compared the methods of classical statistics (Mean+2SDEV), exploratory data analysis (MAD), concentration-number (C-N) and concentration-area (C-A) fractal models. Also, singularity index models were used to separate the Pb and Zn anomalies in Arak 1:100000 geochemical sheet. The results of mentioned methods, showed that the singularity index method has a higher accuracy. Also, indicates the higher concentration of Zn in area of study. 2-Methodology 2-1 Classical statistics Various statistical methods have been used to process geochemical data in order to determine threshold values. Statistical quantities, such as the mean, standard deviation (SDEV) and percentiles, have been used to define threshold for separating anomalies form background. For example, geochemical anomalies have been defined as values higher than a threshold defined as the 75th or 85th percentile, and Mean+SDEV or Mean+2SDEV (Nazarpour et al., 2015). 2-2 EDA (Exploratory Data Analysis) In exploratory data analysis (here after named EDA) of geochemical exploration data, the median+2MAD value was initially used to identify extreme values and act as threshold for further inspection of large data sets (Carranza, 2009). The EDA was first established by Tukey (1977), was developed further by, and then was used by many researchers in modeling of geochemical anomalies (Carranza, 2009). The MAD is the median of absolute deviations of individual dataset values (Xi) from the median of all dataset values (Tukey, 1976): (1) MAD = median 14 [│Xi-median Xi│]"> 2-3 Multifractal Fractal and multifractal models have also been applied to separate anomalies from background values. These methods are gradually being adopted as an effective and efficient means to analyze spatial structures in metallic geochemical systems (Afzal et al., 2017). The concentration-number (C-N), concentration-area (C-A) multi-fractal methods has been used for delineation and description of relations among mineralogical, geochemical and geological features based on surface and subsurface data (Nazarpour et al., 2015). Fractal/multi-fractal models consist of the frequency distribution and the spatial self-similar or self-affine characteristics of geochemical variables and have been demonstrated to be useful tools for decomposing geological complexes and mixed geochemical populations and to recognize weak geochemical anomalies hidden within strong geochemical background (Cheng et al., 1994). 2-4 Singularity index The singularity technique is another vital progress for fractal/multifractal modeling of geochemical data (Zuo et al., 2012). It is defined as the characterization of the anomalous behaviors of singular physical processes that often result in anomalous amounts of energy release or material accumulation within a narrow spatial–temporal interval. The singularity can be estimated from observed element concentration within small neighborhoods based on the following equation (Cheng, 2007): (2) 14X=c·εa-E"> The singularity index is a powerful tool to identify weak anomalies, but it is influenced by the selection of the window size. When applying this method, one should use different window sizes to process the geochemical data and find an appropriate window size which can highlight the interesting results (Zuo et al., 2012). 3- Results and discussion Threshold values obtained using mentioned methods were used to map the spatial distribution of element concentrations. These interpolated maps were produced by means of inverse distance weighted (IDW) method (Nazarpour et al., 2016). In classical statistics and MAD methods, anomalies are usually detected, regardless of the location of each instance, and only by formulating relationships (Hashemi marand et al., 2018). In these methods, it is possible that some of the proposed ranges are false anomalies (Tukey, 1977). The geochemical anomalies of the Pb and Zn elements were separated using fractal methods of concentration-number (C-N), concentration-area (C-A), and according to the fitting line of each element on the logarithmic graphs. The singularity index estimated through a small window mainly reflects the fluctuation of the element concentration (Afzal et al., 2017). The singularity index estimated through a large window mainly reflects regional changes but it does not focus on the local weak anomalies (Zuo et al., 2012). There is probably a significant effect of the contact between exposed bedrock and covered areas, or there could be other deterministic trends as well, which should be studied further (Cheng, 2007). The results of the named methods are shown in Fig. 1. 4-Conclusions Singularity index analysis, indicated that the hidden anomalies are better coincidence with indices and mineral deposit occurrence in the study area. In general, the comparison between these methods indicate that the concentration of Pb and Zn increased toward the and southwest and south-northeast parts, respectively. In these regions there is high potential for the occurrence of promising mining areas. Moreover, the obtained Pb and Zn anomalies have a reasonable correlation with the exposure of limestone in the study area, which is a suitable host rock for the formation of MVT type Pb and Zn deposits.
سال انتشار :
1397
عنوان نشريه :
زمين شناسي كاربردي پيشرفته
فايل PDF :
7668298
عنوان نشريه :
زمين شناسي كاربردي پيشرفته
لينک به اين مدرک :
بازگشت