كليدواژه :
بتن پيشتنيده , تغييرمكان ماندگار , تحليل عددي ـ غيرخطي , ديوار برشي تركيبي , تغييرمكان قائم پاي ديوار
چكيده فارسي :
آسيبديدگي سازههاي ساختماني در برابر زلزلههاي شديد موجب تغيير شكلهاي ماندگار در آنها ميشود، به نحوي كه بهرهبرداري را مختل و در مواردي هزينههاي گزافي بيشتر از هزينهي ساخت به مالكان تحميل ميكند.يكي از روشهاي كاهش هزينه، استفاده از سيستمهاي مركزگراست، كه در آن علاوه بر قابليت استهلاك انرژي و كاهش خسارت، تغييرشكلهاي ماندگار كمتري به سازه تحميل ميكند. استفاده از ديوار برشي پيشساختهي تركيبي در مناطق با خطر نسبي خيلي زياد، تأمين كنندهي رفتار با حركت گهوارهيي است و تغييرمكان نسبي ماندگار را كاهش خواهد داد. در نوشتار حاضر، 3 نمونهي ديوار برشي شامل 2 نمونهي آزمايشگاهي ديوار برشي پيشساختهي تركيبي و 1 نمونهي آزمايشگاهي ديوار برشي پيشساخته شاهد با تمام جزئيات به روش اجزاء محدود مدلسازي و پس از انجام تحليل غيرخطي عددي، پاسخ آنها در برابر بارهاي ثقلي و جانبي ناشي از زلزله بررسي شده است. نتايج به دست آمده از تحليل عددي ـ غيرخطي، تطبيق بسيار خوبي با نتايج آزمايشگاهي دارد و استفاده از سيستم مركزگرا براي مناطق زلزلهخيز مناسب است.
چكيده لاتين :
Yet, the main aim of most of the seismic design codes is to design a building to ensure life safety during a design level earthquake, and hope that the performance of the building under different levels of seismic excitation would be acceptable. However, experiences exhibit that most of structures in severe earthquakes receive damages and residual displacements which prevent
serviceability and, in some cases, impose repair costs higher than new construction investments. In addition, the damage resulted from earthquakes has been unacceptable to building owners due to the cost of structural and non-structural repairs. One of the methods to reduce the cost of repair and maintenance is to utilize a structural self-centering system that provides considerable energy dissipating capability, limits the lateral displacement, and reduces probable damages that the structure can experience. On the other hand, the seismic design of self-centering system exhibits excellent performance regarding the energy dissipation enhancement, reducing damages and minimizing the residual displacements. The use of ``hybrid'' precast reinforced concrete wall structures for high seismic regions provides ample rocking mode of behavior and reduces the residual lateral displacements. In this system, by allowing the wall to rock at its base, the peak structural forces are limited without structural damage. Post-tensioning and energy dissipation are used to ensure stability and limit displacements. In this paper, three tested wall specimens, containing two precast reinforced concrete hybrid shear walls and one emulative precast reinforced concrete shear wall, were simulated and modeled with ample precision regarding their details in ABAQUS software, and then were numerically analyzed under both gravity and monotonic lateral loading to investigate their seismic nonlinear behavior. The obtained results indicate that the self-centered RC walls are favorite systems in high seismic-prone areas, and the nonlinear numerical results of tested specimens mutually correlate to the experimental results.