شماره ركورد :
110185
عنوان مقاله :
تعيين مدل خوشه بندي احتمالاتي بر اساس معيار اطلاع ميزي
عنوان به زبان ديگر :
Probabilistic Clustering Model Selection Using Bayesian Information Criterion
اطلاعات موجودي :
دوفصلنامه سال 1383
رتبه نشريه :
علمي ترويجي
تعداد صفحه :
7
از صفحه :
21
تا صفحه :
27
كليدواژه :
Probabilistic Clustering Model , معيار اطلاع ميزي , خوشه بندي احتمالاتي , Bayesian Information Criterion
چكيده لاتين :
One of the most important problems in analysis of multivariate data is to find the relationship between variables. The easiest way to understand these relationships are scatter plots. In literature of medical, genetics and other fields the goal of data analysis, is clustering data in some homogeneous groups. Most of the ad hoc methods such as hierarchical and nonhierarchical clustering methods are based on maximizing within-group similarities. Since these methods are dependent to the definition of distance between two clusters and number of clusters is determined by definition of an arbitrary threshold via these methods, researchers have problem in determining the best criteria to maximize the within-group similarities. The goal of this paper is to present a new method called "Probabilistic Clustering Model Selection Using Bayesian Information Criterion (BIC)" in such a way that firstly, its structure is free from personal-oriented assumptions about similarities. Secondly, since this method is model-based then by spectral decomposition of covariance matrix we can find the criteria for describing the volume, shape, and orientation of clusters. Furthermore, the best clustering model can be found using BIC.
سال انتشار :
1383
عنوان نشريه :
انديشه آماري
عنوان نشريه :
انديشه آماري
اطلاعات موجودي :
دوفصلنامه با شماره پیاپی سال 1383
كلمات كليدي :
#تست#آزمون###امتحان
لينک به اين مدرک :
بازگشت