شماره ركورد :
1125648
عنوان مقاله :
Use of Artificial Neural Networks to Estimate Installation Damage of Nonwoven Geotextiles
پديد آورندگان :
Ehsan , Amjadi Sardehaei Department of Civil Engineering - Faculty of Engineering - Kharazmi University - Tehran, Iran , Gholamhosein , Tavakoli Mehrjardi Department of Civil Engineering - Faculty of Engineering - Kharazmi University - Tehran, Iran
تعداد صفحه :
92
از صفحه :
1
تا صفحه :
92
كليدواژه :
Nonwoven geotextiles , Artificial neural networks (ANNs) , Regression model , Retained tensile strength , strength reduction factor
چكيده فارسي :
اين مقاله فاقد چكيده فارسي است.
چكيده لاتين :
This paper presents a feed-forward back-propagation neural network model to predict the retained tensile strength and design chart to estimate the strength reduction factors of nonwoven geotextiles due to the installation process. A database of 34 full-scale field tests was utilized to train, validate and test the developed neural network and regression model. The results show that the predicted retained tensile strength using the trained neural network is in good agreement with the results of the test. The predictions obtained from the neural network are much better than the regression model as the maximum percentage of error for training data is less than 0.87% and 18.92%, for neural network and regression model, respectively. Based on the developed neural network, a design chart has been established. As a whole, installation damage reduction factors of the geotextile increases in the aftermath of the compaction process under lower as-received grab tensile strength, higher imposed stress over the geotextiles, larger particle size of the backfill, higher relative density of the backfill and weaker subgrades
سال انتشار :
1398
عنوان نشريه :
زمين شناسي مهندسي- دانشگاه خوارزمي
فايل PDF :
7758447
لينک به اين مدرک :
بازگشت