شماره ركورد :
1126402
عنوان مقاله :
بهبود تجزيه زيستي آلاينده هيدروكربني بنزو پيرن با استفاده از دسته باكتريايي توليد كننده سورفاكتانت زيستي
عنوان به زبان ديگر :
Benz (a)pyrene Biodegradation Improvement Using the Biosurfactant Producing Bacterial Consortium
پديد آورندگان :
سليماني، سحر دانشگاه فردوسي مشهد - دانشكده كشاورزي - گروه علوم خاك , لكزيان، امير دانشگاه فردوسي مشهد - دانشكده كشاورزي - گروه علوم خاك , فتوت، امير دانشگاه فردوسي مشهد - دانشكده كشاورزي - گروه علوم خاك
تعداد صفحه :
15
از صفحه :
605
تا صفحه :
619
كليدواژه :
بنزوپيرن , تجزيه زيستي , سورفاكتانت زيستي , هيدروكربن
چكيده فارسي :
طي سال­ هاي اخير استفاده از ريزجانداران خاكزي جهت كاهش اثرات مخرب آلاينده ­هاي زيست ‌محيطي همانند نفت و مشتقات آن بسيار مورد توجه قرار گرفته است. تجزيه ­پذيري و در نتيجه ماندگاري تركيبات هيدروكربني در طبيعت، تحت تأثير عواملي مختلفي است كه مهمترين آن­ها شامل شرايط محيطي، فعاليت تجزيه كنندگي ريزجاندارن، نوع آلاينده و ميزان دسترسي زيستي آلاينده براي ريزجاندارن مي­ باشد. عوامل فعال سطحي يا سورفاكتانت ­ها موجب افزايش تحرك و تجزيه زيستي تركيبات هيدروفوب شده و بنابراين داراي اثر مثبت بر فرآيند زيست پالايي است. از سوي ديگر، علي‌رغم آن­كه تجزيه زيستي هيدروكربن­هاي پلي ­آروماتيك فرآيندي بالقوه و طبيعي است، اما تركيبات چند جزئي و هيدروكربن­ هايي با وزن مولكولي بالا، جهت تجزيه به بيش از يك گونه ميكروبي كارآمد نياز دارند. در بررسي حاضر با استفاده از روش ­هاي جداسازي و غربالگري، جدايه­ هاي توانمند تجزيه كننده آلاينده بنزوپيرن (به عنوان منبع كربني) و توليد كننده سورفاكتانت زيستي، انتخاب و توانايي جدايه­ هاي منفرد و دسته ­باكتريايي 4 حاصل از آن­ها بر ميزان تجزيه آلاينده در دو محيط محلول و خاك با هم مقايسه شد. نتايج نشان داد كه از ميان جدايه­ هاي حاصل از مرحله جداسازي، دو جدايه AP3 و BM1 به ترتيب با 43 و 40 درصد كاهش ميزان كشش سطحي محيط كشت نسبت به شاهد (فاقد تلقيح جدايه) داراي توانايي توليد سورفاكتانت زيستي بودند. بهينه­ سازي شرايط توليد سورفاكتانت زيستي حاكي از آن بود كه جدايه­ هاي ياد شده در دماي 35 درجه سانتي­گراد، اسيديته 7 و در حضور قند گلوكز به عنوان منبع كربني سهل­ الوصول بيشترين ميزان توليد سورفاكتانت زيستي را نشان داده و در مقايسه با شاهد (دماي 25 درجه سانتي­گراد، اسيديته 6 و قند گلوكز با كشش سطحي 56/42 ميلي­نيوتن بر متر) كشش سطحي كمتري (30/81 و 31/52 ميلي­نيوتن بر متر به ترتيب در جدايه­ هاي AP3 و BM1) را ايجاد نمودند. تجزيه آلاينده بنزوپيرن در محيط محلول توسط دو جدايه و دسته ­باكتريايي حاصل از آن نشان داد كه بيشترين ميزان تجزيه در تيمار تلقيح شده با دسته ­باكتريايي و در حضور سورفاكتانت زيستي استخراج شده از جدايه AP3 رخ داد. اين تيمار سبب تجزيه 87/3 درصد از آلاينده طي دو هفته شد. در حالي‌كه جدايه BM1 با 27/6 درصد تجزيه آلاينده، كمترين اثر را بر تجزيه بنزوپيرن در محيط محلول داشت. مقايسه تجزيه بنزوپيرن در خاك نيز مشخص كرد كه تأثير دسته ­باكتريايي بيشتر از جدايه AP3 به تنهايي مي ­باشد. بطوري‌كه در انتهاي 45 روز، غلظت آلاينده در تيمار حاوي دسته­ جات و سورفاكتانت زيستي صفر و در تيمار تلقيح شده با جدايه AP3 از 150 ميلي­ گرم بر كيلوگرم به 48 ميلي­گرم بر كيلوگرم رسيد. نتايج نشان داد كه بعد از 45 روز، جدايه AP3 آلاينده را به ميزان 68 درصد و دسته­ باكتريايي آلاينده را بطور كامل تجزيه نمودند.
چكيده لاتين :
Introduction: Environmental contamination by crude oil and its various processing products is becoming a common phenomenon which severely damages soil and groundwater resources. Among the constituents of oil waste, polycyclic aromatic hydrocarbons (PAHs) are of environmental concern because of their toxic, mutagenic and/or carcinogenic effects. Bioremediation involves the use of living microorganisms, bacteria or fungi, for detoxification of soil and water organic pollutants by biodegradation, biotransformation, and/or mineralization. Collaboration between different microbes under co-culture conditions such as co-metabolism or antagonism makes the system to perform better than a single microorganism. Total petroleum degradation is a result of a microbial consortium action, which is composed of different species with specific biochemical roles. On the other hand, the majority of components of petroleum products has low solubility in water and tends to bind to soil particles reducing their availability to microorganisms for degradation. This has been well described as a major limitation to the bioremediation of hydrocarbon contamination. The surfactants can be employed to enhance hydrocarbon biodegradation by mobilization, solubilization, or emulsification. Some microorganisms synthesize a wide range of surface-active compounds, generally called biosurfactants, which increases the bioavailability of these compounds. The application of these microbial surfactants in the remediation of hydrocarbons aims to increase their bioavailability or mobilize and remove the contaminants by pseudo-solubilization and emulsification in a treatment process. This work aimed to investigate the impact of the biosurfactant producing consortium on the benzo(a)pyrene biodegradation. Materials and Methods: Four gasoline contaminated soils were enriched in Bushnell-Hass mineral medium with Benzo(a)pyrene (200 mg/l) for three months at 30°C. After this time, to obtain Benzo(a)pyrene-degrading isolates, 0.1 ml of soil suspensions were plated on BH agar plates containing pollutant. Three colonies with different morphological distinct properties were purified on LB agar plates. The screening of the most potent surfactant strain was assayed quantitatively using measurement of surface tension by the Du Nouy ring method. For increasing the production of biosurfactant, medium conditions including pH (6, 7, 8), temperature (25, 30, 35) and carbon source (glucose, sucrose and ribose) were optimized with fractional factorial based on Taguchi. The capability of the isolates and consortium in hydrocarbon biodegradation was investigated in liquid medium of Bushnell-Hass with 150 ppm of Benzo(a)pyrene, during 14 days. Treatments included inoculation of isolates AP3 and BM1 and their consortium in presence and absence of extracted isolates biosurfactants and control (no isolate and biosurfactant). Based on the results of Benzo(a)pyrene degradation in the liquid medium, AP3 isolate, consortium and biosurfactant extracted from AP3 were selected for soil experiment. Four sets of biodegradation experiments were carried out with soil contaminated by 150 ppm of benzo(a)pyrene for 45 days, as follows: set 1: soil + AP3 isolate; set 2: soil + consortium; set 3: soil + consortium + AP3 biosurfactant and set 4: blank (soil). The residual concentrations of contaminant were extracted on days 15, 30 and 45 by dichloromethane solvent and analyzed using GC-FID. Results and Discussion: The results revealed that strains AP3 and BM1 showed a significant potential to produce surface-active agents in the presence of Benzo(a)pyrene as substrate, reducing the surface tension to 43 and 46 mN/m, respectively. Taguchi experimental design method was applied in order to optimize the biosurfactant production by isolates. Results of experiments indicated that the optimum biosurfactant production conditions were found to be temperature of 35º C and pH of 7, and glucose as water soluble carbon source. The produced biosurfactant reduced surface tension to 31/52 mN/m and 30/81 mN/m for BM1 and AP3, respectively. Biodegradation experiments of Benzo(a)pyrene in liquid cultures showed that the overall biodegradation efficiency of the individual isolates after 14 days was lower than consortium. Bacterial consortium enhanced degradation of contaminant to 87.3% (with addition of biosurfactant) compared to 27.6% of removal in presence of BM1 isolate. However, there was no statistically significant change in the degradation rates of contaminant in consortium with addition of AP3 and BM1 surfactant and surfactant free (87.3, 85.6 and 86.8%, respectively). The degradation of Benzo(a)pyrene was significantly enhanced in presence of AP3 biosurfactant at individual BM1 treatments (28.3 and 44.5 to 74.8%). Maximum degradation of Benzo(a)pyrene in contaminated soil was found (100%) in set 3: soil + consortium + AP3 biosurfactant. Based on GC-MS analyses, it degraded around 100% of penzo(a)pyrene, used as the sole carbon and energy source, at an initial concentration of 150 mg L-1, after 45 days of incubation, while alone consortium and isolate were able to remove 86% and 68% of hydrocarbon, respectively. Overall, these results provide evidence that consortium and AP3 biosurfactant could be potential candidates for further bioremediation. Conclusion: The results revealed that the hydrocarbon removal efficiency of the consortium was higher than single species, and the final removal efficiency for the consortium could be reached in a considerably shorter time. The results suggest that biosurfactant-assisted bioremediation may be a promising practical bioremediation strategy for aged PAH-contaminated soils. It is evident from the results that the consortium alone and its producer species are both capable of promoting biodegradation to a large extent.
سال انتشار :
1398
عنوان نشريه :
آب و خاك
فايل PDF :
7822961
لينک به اين مدرک :
بازگشت