پديد آورندگان :
مرداني نجفآبادي، مصطفي دانشگاه علوم كشاورزي و منابع طبيعي خوزستان - گروه اقتصاد كشاورزي , عبدشاهي، عباس دانشگاه علوم كشاورزي و منابع طبيعي خوزستان - دانشكده مهندسي زراعي و عمران روستايي - گروه اقتصاد كشاورزي، ملاثاني، ايران , قرباني، محمدرضا دانشگاه علوم كشاورزي و منابع طبيعي خوزستان - گروه علوم دام , زباري، ياسمين دانشگاه تهران
كليدواژه :
تحليل پوششي دادهها , شبيه سازي مونت كارلو , كارايي , عدم حتميت , خوزستان
چكيده فارسي :
وجود عدم حتميت در دادههاي مورد استفاده در الگوي تحليل پوششي دادهها امري پرهيزناپذير بوده و ضرورت استفاده از الگوهايي كه توانايي كنترل اين عدم حتميت را دارا باشند، به شدت احساس ميشود. در اين بررسي، به تعيين كارايي واحدهاي مرغداري گوشتي استان خوزستان پرداخته شده و به منظور لحاظ شرايط عدم حتميت، از مدل تحليل پوششي دادههاي استوار (RDEA) و فازي بازهاي (FIDEA) استفاده شد. دادههاي مورد نياز با توزيع و تكميل 105 پرسشنامه به صورت مصاحبه حضوري و با استفاده از روش نمونهگيري تصادفي طبقهاي در سال 1396 گردآوري شد. ارزيابي توانايي اين دو مدل در برآورد كارايي واحدهاي مرغداري با كمك شبيهسازي مونتكارلو انجام پذيرفت. نتايج نشان داد كه ميانگين كارايي فني كل مرغداريها در مدل RDEA در سه سطح احتمال 10، 50 و 100 درصد به ترتيب برابر 88%، 91% و 93% ميباشد. نتايج مدلFIDEA نشان داد كه چنانچه سطح فراسنجه α (استفاده بهينه از عاملهاي توليد) افزايش يابد، ميانگين كارايي مرغداريهاي نيمهصنعتي و صنعتي افزايش مييابد. كاربرد نهادههاي هزينهي دارو، برق، آب و مساحت در مرغداريهاي صنعتي و نهادههاي مساحت و شمار نيرويكار در مرغداريهاي نيمهصنعتي از نظر فني ناكارا است. در اين راستا، آموزش اصول پرورش طيور، مديريت بهتر كابرد نهادهها، تخصيص منبعهاي توليد و روش استفاده از تجهيزات در مرغداريها براي افزايش كارايي پيشنهاد شد. نتايج شبيهسازي مونتكارلو نشان داد كه ميانگين درصد سازگاري رتبهبندي براي دادههاي شبيه سازي شده در همهي سناريوهاي عدم حتيمت در مدل RDEA بيشتر از مدل FIDEA بوده و در اين راستا، استفاده از نتايج آن براي بهبود وضعيت واحدهاي ناكارا مناسب به نظر ميرسد.
چكيده لاتين :
Introduction
Chicken breeding production is one of the most agricultural subsectors in Iran and has a special position in the production and employment of the agricultural sector. According to the importance of chicken as a strategic protein product, investing in this field is inevitable. Due to high growth rate of birds compared to other livestock, the possibility of producing in all weather conditions and rapid return on investment, the poultry industry has a high priority to other industries. Optimum use of inputs and existing possibilities lead to an increase in production and reduce the fixed price, thereby increasing the Country's competitive and export potential and also an increase in the0 welfare of the society. Since increasing production by inputs development and technical changes has many limitations in developing countries, improving technical efficiency has been emphasized as a suitable approach. So investigating the efficiency of chicken breeding units and trying to improve this efficiency and optimum use of inputs has been a matter of importance. The main objective of this study is to measure technical efficiency of broiler breeding in Khuzestan Province by utilizing the models of RDEA and FIDEA model. Also, the sub-objectives such as estimating the optimal use of inputs in inefficient units and comparing the capability of RDEA and FIDEA models when deals with uncertain data are obtained.
Materials and Methods
Several techniques are used to evaluate decision making in production units. Data Envelop Analysis (DEA) model is widely used to evaluate relative efficiency in these units. Despite its numerous merits, one of its major limitations is high sensitivity to the uncertainty of data. To overcome this limitation, the method of Interval Data Envelop Analysis (IDEA) was introduced, yet this model also suffers from interpreting high and low ranges of efficiency. But this model also suffers from interpreting high and low ranges of efficiency. To deal with this issue, Fuzzy Data Envelop Analysis (FDEA) and Stochastic Data Envelop Analysis (SDEA) models were presented by researchers. These models also suffer from lack of point solutions, awareness of data distribution and ignoring the information of coefficient uncertainty respectively. To clear up the mentioned defects, the Robust Data Envelop Analysis (RDEA) model was developed in the late 1990s. In this study, FIDEA and RDEA models are applied to calculate the efficiency of decision making units under the condition of uncertainty. Moreover, Mont Carlo simulation is used to evaluate the capability of RDEA and FIDEA models against uncertain data and investigate their ability to deal with possible changes in input and output data. The necessary data were collected from the population of poultry production units in Khuzestan Province, by surveying a questionnaire of 105 production units that were selected using simple random sampling method.
Results and discussion
Based on the RDEA model output, the average technical efficiency of all production units in three probability levels of 0.1, 0.5 and 1 are 0.88, 0.91 and 0.93 respectively. The results also indicate that in three probability levels, the average efficiency of semi-industrial poultry production units is more than industrial ones. Calculating the technical efficiency by FIDEA show that in all levels of optimal use of resources, the high and low range of efficiency in semi-industrial poultry production units are more than industrial ones. Applying the inputs of drug, electricity and water cost, and area in industrial units and inputs of labor force and area in semi-industrial units are technically inefficient. The results of Mont Carlo simulation indicate that in RDEA model, by increasing system protection against uncertainty (decrease in p value), the ranking compatibility percentage is increased. The average ranking compatibility percentage for simulated data in all uncertainty scenarios in RDEA model is higher than FIDEA.
Suggestion
According to the results, since industrial poultry units are less efficient at using inputs than semi-industrial ones, these units must be the references for inefficient units. Moreover, since the cost of drug, affecting the inefficiency of poultry units, is one of the most important inputs, it is recommended that these units should be given the necessary training to use this input. Furthermore, since the RDEA model has more capability to protect the system against uncertainty, it is suggested that all corrective actions should be planned with respect to the outputs of this model.