پديد آورندگان :
پاكدل، احسان دانشگاه شهيد بهشتي، تهران , مجدزاده طباطبايي، محمدرضا دانشگاه شهيد بهشتي، تهران , سركرده، حامد دانشگاه حكيم سبزواري، سبزوار , قريشي نجف آبادي، حسين دانشگاه شهيد بهشتي، تهران
كليدواژه :
آبگير قائم , امواج , گرداب , بردار سرعت , نرم افزار STAR-CCM
چكيده فارسي :
گرداب را ميتوان به عنوان يكي از پديده هاي ناشناخته در زمينه آبگيري از مخازن سدها نام برد كه ميتواند باعث به وجود آمدن مشكلاتي در فرآيند آبگيري شود. در اين تحقيق با هدف بررسي تاثير امواج در سطح مخزن بر گرداب، به شبيهسازي عددي امواج در دهانه آبگيرهاي قائم با استفاده از نرمافزار STAR-CCM، در شرايط تشكيل گردابهاي مختلف پرداخته شده است. در همين راستا گردابهاي كلاس A، B و C در مدل عددي شبيهسازي گرديد و نتايج آن پس از برخورد با امواج بررسي شد. نتايج نشان داد كه امواج باعث كاهش مولفههاي سرعت مماسي، شعاعي و محوري گرداب شكل گرفته ميشوند. طبق نتايج ارائه شده، ماكزيمم مقدار مولفه سرعت مماسي در هنگام حضور امواج به طور ميانگين در گردابهاي نوع A، B و C به ترتيب حدود 14%، 19% و 23% كاهش داده شده است. ميزان كاهش ماكزيمم مقدار مولفه سرعت شعاعي نيز براي گردابهاي كلاس A، B و C به ترتيب حدود 9%، 13% و 18% ميباشد. ماكزيمم مقدار سرعت محوري نيز براي گردابهاي كلاس A، B و C به ترتيب حدود 15%، 16% و 23% كاهش داده شدهاند. با توجه به نتايج شبيهسازي، ميزان كاهش با كم شدن دامنه امواج بيشتر شده و اين بدين معني است كه امواج با دامنه كوچكتر يا به عبارتي ريزموجها بهتر ميتوانند مولفههاي سرعت را كاهش داده و در نتيجه جريان گردابي را به روشي هيدروليكي تضعيف كنند.
چكيده لاتين :
The formation of a vortex at the mouth of power plant intake is one of the unfavorable hydraulic phenomena
that occur during dewatering of dams. More precisely, the formation of vortex flows in the openings of the
intake disturbs the proper functioning of the intake structure. vortices cause problems such as oscillating in the
system, reducing turbine output, increasing hydraulic losses in the intake openings, entering the air and
particles into the intake pipe and eventually reducing its efficiency. In recent years, various scholars have
conducted extensive studies on the phenomenon of vortex. In the meantime, research has been carried out
experimentally using mechanical devices and less attention has been paid to the natural phenomena existing
on the level of reservoirs of dams and their impact on the vortex. One of the most important natural phenomena
that occurs in the reservoir of dams is the waves that can affect the vortex. In this research, with the aim of
investigating the effect of waves on the vortex, numerical simulation of waves in the openings of vertical
intake has been studied in various vortex formation conditions. In this regard, three class of vortices A, B and
C were simulated in numerical model and the results were investigated after dealing with waves. To simulate
the flow in the vertical intake, the model designed by Sun and Liu was used. This model is designed in a
cylindrical shape with four rectangular inlets, with a vertical intake located at the center and end of the cylinder.
In the present study, the model was studied in three-dimensional and two-phase mode, so that numerical
simulation of vortex and wave can be investigated with this approach. In order to reduce the computational
time to solve the equations, Euler's method was chosen and the turbulence was simulated using the LES model
in STAR-CCM Software. After sensitivity analysis, 3 mm grid dimensions were selected. For computational
mesh domain, a Cartesian coordinate was used and the free surface was considered using the VOF method.
Accordingly, after formation of three classes of vortices A, B and C in the numerical model, three waves with
a/d ratio of 2.6%, 1.3% and 0.3% were generated and the effect of their collisions on vortices was analyzed.
The amplitudes of the waves are determined in relative proportions of the reservoir water's height and are not
far from reality. The results showed that the waves reduced the components of tangential, radial and axial
velocity. According to the results, the maximum component of the tangential velocity at the time of the
presence of waves is reduced by about 14%, 19% and 23%, respectively, in the class A, B, and C vortices. The
radial velocity component is also reduced by about 9%, 13% and 18% for the A, B, and C vortices, respectively.
The maximum axial velocity was also reduced to 26%, 13%, and 23% for class A, B, and C vortices,
respectively. According to the simulation results, the decrease rate with decrease decreasing wave amplitude,
which means that smaller waves can lower the velocity components and thus weaken the vortex flow.