عنوان مقاله :
كنترل بهينة خطي يك وسيلة هوايي، با در نظر گرفتن مدل ديناميكي موتور پيشران و بازخورد سرعت
عنوان به زبان ديگر :
Linear Optimal Control of an Aerial Vehicle by Utilizing the Dynamic Model of Propulsion System and Velocity Feedback
پديد آورندگان :
ناظمي زاده، مصطفي دانشگاه صنعتي مالك اشتر - مجتمع مهندسي مكانيك، ايران , بابايي، عليرضا دانشگاه صنعتي مالك اشتر - مجتمع مهندسي مكانيك، ايران
كليدواژه :
وسيلة هوايي , موتور پيشرانش , مدل ديناميكي , كنترل بهينة خطي , بازخورد سرعت
چكيده فارسي :
در اين مقاله كنترل بهينة يك وسيلة هوايي با در نظر گرفتن ديناميك جسم پرنده به همراه مدلسازي موتور پيشران هوازي و بازخورد سرعت آن مورد مطالعه قرار گرفته است. بدين منظور، ابتدا معادلات ديناميكي وسيله هوايي استخراج و مدل رياضي موتور رانش بدست آمده است. سپس، معادلات ديناميك غيرخطي وسيلة پرنده و معادلات موتور با يكديگر تركيب شده است. با بيان معادلات ديناميكي خطي سازي شده در فضاي حالت، فرمولاسيون كنترل بهينة خطي با معادلات قيدي ديناميك سيستم در نظر گرفته شده و تابع هزينة كمينه انرژي بدست آمده است. با حل مسئله كنترل بهينة خطي، شبيهسازيهاي متنوعي ارايه شده است. نتايج بدست آمده نشان ميدهد كه با در نظر گرفتن شرايط اولية مختلف و عدم قطعيت در مدلسازي سيستم، كنترل بهينة سيستم به خوبي انجام شده است. توجه شود كه اثر تغيير ضرايب وزني مسئلة كنترل بهينه بر مسير كنترلي و بهينهسازي مصرف انرژي بسيار حايز اهميت است. همچنين، نتايج بدست آمده نشاندهندة كارايي روش پيشنهادي در مدلسازي و كنترل وسيله هوايي با پيشران هوازي است.
چكيده لاتين :
In this article, optimal control of an aerial vehicle is investigated with consideration of its dynamics and modeling of an air-breathing propulsion system, using its velocity feedback.To this end, the dynamic equations of the vehicle and mathematical model of the air-breathing propulsion system are derived. Then, the non-linear dynamic equations of the vehicle and the equations of the propulsion system are combined. By presenting dynamic equations in state space, the linear optimal control formulation with dynamic constraint equations and minimum energy cost function is developed. By solving this optimal control problem, variant simulations are performed. Note, considering different initial conditions and ancertainity, the system's optimal control has been implemented fairly well. Moreover, the weighting coefficients of the optimal control problem considerably affect the optimal path and energy consumption. The obtained results indicate the applicability of the proposed method for modeling and control of the aerial vehicle with an air-breathing propulsion system.
عنوان نشريه :
فناوري در مهندسي هوافضا