شماره ركورد :
1192195
عنوان مقاله :
تخمين بارش با استفاده از تصاوير ماهواره‌اي رطوبت سطحي خاك ASCAT در حوضه‌هاي نيمه‌خشك و مرطوب ايران
عنوان به زبان ديگر :
Estimation of Precipitation Using Satellite-based Surface Soil Moisture (SSM) in Semi-Arid and Humid Climates of Iran
پديد آورندگان :
طارمي، مريم دانشگاه بينالمللي امام خميني - گروه مهندسي آب , عزيزيان، اصغر دانشگاه بينالمللي امام خميني - گروه مهندسي آب , بروكا، لوكا مركز ملي مطالعات ايتاليا - موسسه تحقيقات هيدرولوژي
تعداد صفحه :
14
از صفحه :
1427
از صفحه (ادامه) :
0
تا صفحه :
1440
تا صفحه(ادامه) :
0
كليدواژه :
باران , رطوبت سطحي خاك , سنجش از دور , بيلان آب خاك
چكيده فارسي :
ﯾﮑﯽ از روشﻫﺎي ﻧﻮﯾﻦ ﺗﺨﻤﯿﻦ ﺑﺎرش اﺳﺘﻔﺎده از اﻟﮕﻮرﯾﺘﻢ SM2Rain ﻣﯽﺑﺎﺷﺪ ﮐﻪ ﺑﺎ ﻣﺤﻮرﯾﺖ ﺑﺮآورد ﺑﺎرش ﺑﺎ اﺳﺘﻔﺎده از ﺗﻐﯿﯿﺮات رﻃﻮﺑﺖ ﺧﺎك و ﺣﻞ ﻣﻌﮑﻮس ﻣﻌﺎدﻟﻪ ﺑﯿﻼن آب ﺧﺎك ﺗﻮﺳﻌﻪ داده ﺷﺪه اﺳﺖ. در ﺗﺤﻘﯿﻖ ﺣﺎﺿﺮ ﺑﻪ ارزﯾﺎﺑﯽ ﻋﻤﻠﮑﺮد اﯾﻦ اﻟﮕﻮرﯾﺘﻢ در ﺗﺨﻤﯿﻦ ﺑﺎرش روزاﻧﻪ در ﺳﻄﺢ دو اﻗﻠﯿﻢ ﺧﺸﮏ/ﻧﯿﻤﻪﺧﺸﮏ )ﺧﺮاﺳﺎن رﺿﻮي( و ﻣﺮﻃﻮب )ﻣﺎزﻧﺪران( اﯾﺮان و ﺑﺎ اﺳﺘﻔﺎده از دادهﻫﺎي ﻣﻨﺒﻊ رﻃﻮﺑﺘﯽ ASCAT در ﺑﺎزه زﻣﺎﻧﯽ 2006 ﺗﺎ 2013 ﭘﺮداﺧﺘﻪ ﺷﺪه اﺳﺖ. ﻧﺘﺎﯾﺞ ﺑﻪدﺳﺖ آﻣﺪه در دو اﺳﺘﺎن ﺧﺮاﺳﺎن رﺿﻮي و ﻣﺎزﻧﺪران ﻧﺸﺎن داد ﮐﻪ ﻣﺘﻮﺳﻂ ﺿﺮﯾﺐ ﻫﻤﺒﺴﺘﮕﯽ )CC( ﺑﯿﻦ ﺑﺎرش ﻣﺸﺎﻫﺪاﺗﯽ و ﺗﺨﻤﯿﻦ زده ﺷﺪه در ﺳﻄﺢ ﺑﺎزهﻫﺎي ﻣﺬﮐﻮر ﺗﻮﺳﻂ اﻟﮕﻮرﯾﺘﻢ SM2Rain ﺑﻪﺗﺮﺗﯿﺐ ﻣﻌﺎدل 0/70 و 0/62 ﻣﯽﺑﺎﺷﺪ. ﻃﺒﻖ ﻣﺤﺎﺳﺒﺎت ﺻﻮرت ﮔﺮﻓﺘﻪ در ﺳﻄﺢ اﺳﺘﺎن ﺧﺮاﺳﺎن رﺿﻮي، در ﺑﺨﺶﻫﺎي ﺟﻨﻮب و ﺟﻨﻮب-ﻏﺮﺑﯽ اﺳﺘﺎن، اﻟﮕﻮرﯾﺘﻢ SM2Rain ﺑﺎ ﺿﺮﯾﺐ CC در ﺣﺪود 0/84 و RMSE ﻣﻌﺎدل 3/9 ﻣﯿﻠﯽﻣﺘﺮ در روز ﺑﻬﺘﺮﯾﻦ ﻋﻤﻠﮑﺮد و در ﺑﺨﺶﻫﺎي ﺷﻤﺎﻟﯽ اﺳﺘﺎن ﻧﯿﺰ ﺑﺎ ﺿﺮﯾﺐ CC در ﺣﺪود 0/54 و RMSE ﻣﻌﺎدل 7/7 ﻣﯿﻠﯽﻣﺘﺮ در روز ﻋﻤﻠﮑﺮد ﺿﻌﯿﻒ داﺷﺘﻪ اﺳﺖ. در ﺑﺨﺶﻫﺎي ﻋﻤﺪهاي از اﺳﺘﺎن ﻣﺎزﻧﺪران ﻧﯿﺰ ﻋﻤﻠﮑﺮد اﻟﮕﻮرﯾﺘﻢ ﻣﺬﮐﻮر، ﻗﺎﺑﻞ ﻗﺒﻮل ارزﯾﺎﺑﯽ ﻣﯽﺷﻮد ﺑﻪﻃﻮري ﮐﻪ در ﻣﻨﺎﻃﻖ ﺷﺮﻗﯽ ﺗﺎ ﺑﺨﺶﻫﺎي ﻣﺮﮐﺰي اﺳﺘﺎن، ﺿﺮﯾﺐ ﻫﻤﺒﺴﺘﮕﯽ 0/72 و RMSE ﻣﻌﺎدل 3/9 ﻣﯿﻠﯽﻣﺘﺮ در روز ﻣﯽﺑﺎﺷﺪ. ﻧﺘﺎﯾﺞ ﺣﺎﺻﻞ از اﺻﻼح اﻟﮕﻮرﯾﺘﻢ SM2Rain ﻧﯿﺰ ﻧﺸﺎن داد ﮐﻪ ﺑﺎ اﻓﺰودن ﺗﺮم ﺗﺒﺨﯿﺮ-ﺗﻌﺮق و ﺗﻌﺮق ﻋﻤﻠﮑﺮد اﻟﮕﻮرﯾﺘﻢ ﻣﺬﮐﻮر در ﺷﺒﯿﻪﺳﺎزي ﺑﺎرش در ﺑﺎزهﻫﺎي ﻣﻄﺎﻟﻌﺎﺗﯽ ﺑﯿﻦ 10 ﺗﺎ 18 درﺻﺪ اﻓﺰاﯾﺶ ﯾﺎﻓﺘﻪ اﺳﺖ. ﺑﺎ اﺻﻼح اﻟﮕﻮرﯾﺘﻢ ﻣﺬﮐﻮر ﻣﯿﺰان ﻣﺘﻮﺳﻂ ﺷﺎﺧﺺ RBias در ﺳﻄﺢ اﺳﺘﺎن ﺧﺮاﺳﺎن رﺿﻮي از 21/9- ﺑﻪ 9/3 درﺻﺪ و در ﺳﻄﺢ اﺳﺘﺎن ﻣﺎزﻧﺪران از 36/9- ﺑﻪ 7/9 درﺻﺪ ﮐﺎﻫﺶ ﯾﺎﻓﺘﻪ اﺳﺖ. ﺧﺮوﺟﯽ ﺣﺎﺻﻞ از اﯾﻦ ﺗﺤﻘﯿﻖ ﻣﯽﺗﻮاﻧﺪ ﺑﻪ ﻋﻨﻮان ﯾﮏ داده ﺑﺎرﺷﯽ ﺟﺎﯾﮕﺰﯾﻦ ﯾﺎ ﻣﮑﻤﻞ دادهﻫﺎي زﻣﯿﻨﯽ ﺑﻪ وﯾﮋه در ﺣﻮﺿﻪﻫﺎﯾﯽ ﮐﻪ داراي آﻣﺎر ﮐﻤﯽ ﻫﺴﺘﻨﺪ، ﻣﺪﻧﻈﺮ ﻗﺮار ﮔﯿﺮد.
چكيده لاتين :
One of the new methods for estimation of rainfall is SM2Rain algorithm which calculates rainfall using soil moisture variations and inverse solution of soil water balance equation. This research addressed the efficiency of SM2Rain algorithm for rainfall estimation over the semi-arid (Khorasan-Razavi) and humid (Mazandaran) climate regions of Iran using ASCAT surface soil moisture dataset during 2006-2013. Findings indicate that the basin-averaged value of correlation coefficient (CC) between the estimated and observed datasets for Khorasan-Razavi and Mazandaran areas is 0.70 and 0.62, respectively. Results in the south and south-west regions of Khorasan-Razavi showed that the SM2Rain algorithm with the CC value of 0.84 and RMSE value of 3.9 mm/day (basin-averaged) performs very well, while in the north parts of the province with the CC value of 0.54 and RMSE value of 7.7 mm/day, the performance of this algorithm is relatively low. Also, the performance of SM2Rain algorithm in most parts of the Mazandaran province, especially in east and central parts, is acceptable and the basin-averaged values of CC and RMSE are 0.72 and 3.9 mm/day, respectively. The results also showed that by adding evapotranspiration term to SM2Rain algorithm, the efficiency of modified algorithm in estimation of rainfall increases about 10-18% in both regions. Furthermore, by using the modified SM2Rain algorithm over the Khorasan-Razavi, the basin-averaged value of relative bias (RBias) decreases from -21.9% to 9.3% and in Mazandaran region, the RBias decreases from -36.9 to 7.9%. The findings of this research indicate that the estimated rainfall with the SM2Rain algorithm can be considered as an alternative or supplementary dataset for ground-based observations, especially in ungauged catchments or data-limited areas.
سال انتشار :
1399
عنوان نشريه :
تحقيقات آب و خاك ايران
فايل PDF :
8259837
لينک به اين مدرک :
بازگشت