عنوان مقاله :
توسعه مدل عددي آبياري جويچهاي با تلفيق معادلههاي سنت-ونانت يكبعدي و ريچاردز سهبعدي
عنوان به زبان ديگر :
Development of a Numerical Model for Furrow Irrigation by Coupling 1D Saint-Venant and 3D Richards’ Equations
پديد آورندگان :
ناقدي فر، محمدرضا دانشگاه فردوسي مشهد - دانشكده كشاورزي - گروه علوم و مهندسي آب , نقي ضيائي، علي دانشگاه فردوسي مشهد - دانشكده كشاورزي - گروه علوم و مهندسي آب , انصاري، حسين دانشگاه فردوسي مشهد - دانشكده كشاورزي - گروه علوم و مهندسي آب
كليدواژه :
جريان سطحي , جريان زيرسطحي , فاز پيشروي , توزيع مجدد
چكيده فارسي :
ﺗﻮﺳﻌﻪ ﻣﺪلﻫﺎي ﻋﺪدي ﺑﺮاي ارزﯾﺎﺑﯽ و ﻣﺪﯾﺮﯾﺖ روشﻫﺎي آﺑﯿﺎري ﺑﺨﺸﯽ از ﻓﻌﺎﻟﯿﺖﻫﺎي ﻻزم ﺑﺮاي ﺗﻮﻟﯿﺪ ﺳﺎﻣﺎﻧﻪﻫﺎي ﭘﺸﺘﯿﺒﺎﻧﯽ ﺗﺼﻤﯿﻢ ﻣﺪﯾﺮﯾﺖ آب در ﻣﺰرﻋﻪ ﻣﯽﺑﺎﺷﺪ. در اﯾﻦ راﺳﺘﺎ، ﭘﮋوﻫﺶ ﺣﺎﺿﺮ ﺑﻪ ﺗﻮﺳﻌﻪ ﯾﮏ ﻣﺪل ﺗﻠﻔﯿﻘﯽ آﺑﯿﺎري ﺟﻮﯾﭽﻪاي ﺑﺎ اﺳﺘﻔﺎده از ﻣﻌﺎدﻻت ﺳﻨﺖ-وﻧﺎﻧﺖ ﯾﮏﺑﻌﺪي ﻫﯿﺪرودﯾﻨﺎﻣﯿﮏ و ﻓﺮم ﮐﺎﻣﻞ ﻣﻌﺎدﻟﻪ ﺳﻪﺑﻌﺪي رﯾﭽﺎردز ﻣﯽﭘﺮدازد. ﺑﺮاي ﺣﻞ ﻣﻌﺎدﻻت ﺳﻨﺖ-وﻧﺎﻧﺖ از ﯾﮏ ﻃﺮح ﺻﺮﯾﺢ و ﺑﺮاي ﺣﻞ ﻣﻌﺎدﻟﻪ رﯾﭽﺎردز از ﻃﺮح ﺿﻤﻨﯽ اﺳﺘﻔﺎده ﺷﺪه اﺳﺖ. ﻫﻤﭽﻨﯿﻦ از روش اﻧﺘﻘﺎل دﺳﺘﮕﺎه ﻣﺨﺘﺼﺎت ﺑﺮاي ﻣﺪﯾﺮﯾﺖ ﺷﺒﮑﻪ ﻧﺎﻣﺘﻌﺎﻣﺪ ﻣﻌﺎدﻟﻪ ﺳﻪﺑﻌﺪي ﺑﻬﺮه ﮔﺮﻓﺘﻪ ﺷﺪه اﺳﺖ. ﻣﺪل اراﺋﻪﺷﺪه ﺗﻮﺳﻂ دادهﻫﺎي آزﻣﺎﯾﺸﮕﺎﻫﯽ و ﻋﺪدي ﻣﻮرد ارزﯾﺎﺑﯽ ﻗﺮار ﮔﺮﻓﺘﻪ و ﻧﺘﺎﯾﺞ اراﺋﻪﺷﺪه دﻗﺖ ﻗﺎﺑﻞ ﻗﺒﻮﻟﯽ را ﻧﺸﺎن دادﻧﺪ. رﯾﺸﻪ ﻣﯿﺎﻧﮕﯿﻦ ﻣﺮﺑﻌﺎت ﺧﻄﺎ و ﻣﯿﺎﻧﮕﯿﻦ ﻗﺪرﻣﻄﻠﻖ ﺧﻄﺎ ﺑﺮاي ﻣﻨﺤﻨﯽ ﻓﺎز ﭘﯿﺸﺮوي ﺑﻪ ﺗﺮﺗﯿﺐ ﺑﺮاﺑﺮ ﺑﺎ 0/631s و 2/630s ﺑﻪ دﺳﺖ آﻣﺪ. ﻫﻤﭽﻨﯿﻦ ﺣﺪاﮐﺜﺮ ﺧﻄﺎي رﯾﺸﻪ ﻣﯿﺎﻧﮕﯿﻦ ﻣﺮﺑﻌﺎت ﺧﻄﺎ و ﻣﯿﺎﻧﮕﯿﻦ ﻗﺪرﻣﻄﻠﻖ ﺧﻄﺎ ﺑﺮاي ﺷﺒﯿﻪﺳﺎزي ﺗﻮزﯾﻊ ﭘﺘﺎﻧﺴﯿﻞ ﻣﺎﺗﺮﯾﮏ ﺑﻪ ﺗﺮﺗﯿﺐ ﺑﺮاﺑﺮ ﺑﺎ m 0/24 و m 0/45 ﺑﻮد. در ﻧﻬﺎﯾﺖ ﻣﺪل اراﺋﻪﺷﺪه ﺑﺮاي ﺷﺒﯿﻪﺳﺎزي آﺑﯿﺎري در ﯾﮏ آزﻣﺎﯾﺶ ﻋﺪدي آﺑﯿﺎري ﺟﻮﯾﭽﻪاي ﺑﺎ ﭘﻨﺞ ﻧﻮﺑﺖ آﺑﯿﺎري ﻣﻮرد اﺳﺘﻔﺎده ﻗﺮار ﮔﺮﻓﺘﻪ و ﻧﺘﺎﯾﺞ ﺗﺠﺰﯾﻪ و ﺗﺤﻠﯿﻞ ﺷﺪ. ﻧﺘﺎﯾﺞ ﻧﺸﺎن داد ﮐﻪ ﻣﺪل ﺣﺎﺿﺮ ﺗﻮاﻧﺎﯾﯽ ﺷﺒﯿﻪﺳﺎزي ﻓﺎز ﭘﯿﺸﺮوي آﺑﯿﺎري ﺟﻮﯾﭽﻪاي را دارد.
چكيده لاتين :
Development of numerical models for management and assessment of irrigation systems is an important step for establishing farm decision support systems. In this study, a coupled model has been developed for simulation of furrow irrigation using 1D fully hydrodynamic form of Saint-Venant equations and 3D fully-form of Richards’ equation. The Saint-Venant equations have been discretized by an explicit scheme while the Richards’ equation has been solved by an implicit scheme. Furthermore, coordinate transformation technique was employed to handle non-orthogonal grids of 3D Richards’ equation. The model was subsequently validated using experimental and numerical data and in all cases acceptable accuracy was observed. Root mean square error and mean absolute error for the advance phase were 0.63 and 2.63 sec, respectively. Furthermore, the maximum root mean square error and the mean absolute error for pressure head distribution were obtained 0.24 and 0.45 m, respectively. Finally, the proposed model was employed to simulate furrow irrigation for five irrigation events and the results were analyzed. The results showed that the proposed model is able to simulate advance phase of furrow irrigation.
عنوان نشريه :
تحقيقات آب و خاك ايران