پديد آورندگان :
رابطي، ﻣﺴﻌﻮد داﻧﺸﮕﺎه ﺻﻨﻌﺘ ﯽ ﻧﻮﺷ ﯿﺮواﻧ ﯽ ﺑﺎﺑﻞ - داﻧﺸﮑﺪه ﻣﻬﻨﺪﺳﯽ ﻣﮑﺎﻧﯿ ﮏ - ﮔﺮوه ﺣﺮارت و ﺳﯿﺎﻻت , جهانيان، اميد داﻧﺸﮕﺎه ﺻﻨﻌﺘ ﯽ ﻧﻮﺷ ﯿﺮواﻧ ﯽ ﺑﺎﺑﻞ - داﻧﺸﮑﺪه ﻣﻬﻨﺪﺳﯽ ﻣﮑﺎﻧﯿ ﮏ - ﮔﺮوه ﺣﺮارت و ﺳﯿﺎﻻت , رﻧﺠﺒﺮ، علي اكبر داﻧﺸﮕﺎه ﺻﻨﻌﺘ ﯽ ﻧﻮﺷ ﯿﺮواﻧ ﯽ ﺑﺎﺑﻞ - داﻧﺸﮑﺪه ﻣﻬﻨﺪﺳﯽ ﻣﮑﺎﻧﯿ ﮏ - ﮔﺮوه ﺣﺮارت و ﺳﯿﺎﻻت , صفي الدين اردبيلي، محمد داﻧﺸﮕﺎه ﺷﻬ ﯿﺪ ﭼﻤﺮان اﻫﻮاز - داﻧﺸﮑﺪه ﮐﺸﺎورزي - ﮔﺮوه ﻣﻬﻨﺪﺳﯽ ﺑ ﯿﻮﺳﯿﺴﺘﻢ
كليدواژه :
ﻣﻮﺗﻮر اﺷﺘﻌﺎل ﺗﺮاكمي , ﻣﺨﻠﻮط ﻫﻤﮕﻦ , ﻣﺪلﻫﺎي نيمهﺗﺠﺮﺑﯽ اﻧﺘﻘﺎل ﺣﺮارت , ﺷﺎر حرارتي , ﮔﺎز طبيعي
چكيده فارسي :
ﭼﮑﯿﺪه اﺣﺘﺮاق اﺷﺘﻌﺎل ﺗﺮاﮐﻤ ﯽ ﻣﺨﻠﻮط ﻫﻤﮕﻦ ﺑﻪ دﻟﯿﻞ ﺑﺎزده ﺣﺮارﺗ ﯽ ز ﯾﺎد و ﺗﻮﻟﯿﺪ اﮐﺴﯿﺪﻫﺎ ي ﻧﯿ ﺘﺮوژن و دوده ﻧﺎﭼ ﯿﺰ، ﺗﻮﺟﻬﺎت ﺑﺴﯿﺎري را ﺑﻪ ﺧﻮد ﺟﻠﺐ ﮐﺮده اﺳﺖ. اﻧﺘﻘﺎل ﺣﺮارت از ﮔﺎزﻫﺎ ﺑﻪ دﯾﻮاره ﻫﺎي ﻣﺤﻔﻈﻪ اﺣﺘﺮاق ﺗﺄﺛﯿ ﺮ زﯾﺎد ي ﺑﺮ روي اﺣﺘﺮاق و ﻓﺮآﯾﻨﺪ ﺷﮑﻞ ﮔﯿﺮي آﻻﯾﻨﺪهﻫﺎ در ﻣﻮﺗﻮر اﺷﺘﻌﺎل ﺗﺮاﮐﻤﯽ ﻣﺨﻠﻮط ﻫﻤﮕﻦ دارد. در اﯾﻦ ﻣﻄﺎﻟﻌﻪ ﺑﺮاي اوﻟ ﯿﻦ ﺑﺎر ﺑﺎ در ﻧﻈﺮ ﮔﺮﻓﺘﻦ ﺳﻮﺧﺖ ﮔﺎز ﻃﺒﯿﻌ ﯽ، از ﻣﺪل ﺻﻔﺮﺑﻌﺪي ﺗﮏ ﻧﺎﺣ ﯿﻪا ي ﮐﻮﭘﻞ ﺑﺎ ﺳ ﯿﻨﺘ ﯿ ﮏ ﻣﻔﺼﻞ ﺷﯿﻤ ﯿﺎﯾﯽ ﺑﺮاي ارزﯾﺎﺑﯽ ﻣﺪلﻫﺎي ﻧﯿﻤﻪﺗﺠﺮﺑﯽ اﻧﺘﻘﺎل ﺣﺮارت آﻧﺎﻧﺪ، وﺷﻨﯽ ، ﻫﻮﻫﻨﺒﺮگ، آﺳﺎﻧ ﯿﺲ و ﻫﻨﺴﻞ ﺟﻬﺖ ﺗﻌﯿﯿﻦ ﺷﺎر ﺣﺮارﺗﯽ در ﻣﻮﺗﻮر اﺷﺘﻌﺎل ﺗﺮاﮐﻤ ﯽ ﻣﺨﻠﻮط ﻫﻤﮕﻦ اﺳﺘﻔﺎده ﺷﺪ. ﺑﺮاي اﯾﻦ ﻣﻨﻈﻮر اﺑﺘﺪا ﻣﺪل ﺳﻪﺑﻌﺪي دﯾﻨﺎﻣﯿ ﮏ ﺳ ﯿﺎﻻت ﻣﺤﺎﺳﺒﺎﺗ ﯽ ﮐﻮﭘﻞ ﺑﺎ ﺳﯿﻨﺘﯿ ﮏ ﻣﻔﺼﻞ ﺷ ﯿﻤﯿﺎﯾﯽ ﺑﺎ دادهﻫﺎي ﺗﺠﺮﺑﯽ ﺻﺤﺖﺳﻨﺠﯽ ﺷﺪ و ﻣﺪل ﺳﻪﺑﻌﺪي ﺑﻪﻋﻨﻮان ﻣﺮﺟﻊ و ﭘﺎﯾﻪ ﻣﻘﺎﯾﺴﻪ ﺑﺮ اي ارزﯾﺎﺑﯽ ﻣﺪل ﺻﻔﺮﺑﻌﺪي ﻗﺮار ﮔﺮﻓﺖ. از روش ﺳﻄﺢ ﭘﺎﺳﺦ ﺑﻪﻣﻨﻈﻮر ﺑﺮرﺳ ﯽ اﺛﺮ ﺷﺎﺧﺼﻪﻫﺎي ورودي ﻋﻤﻠﮑﺮد ي ﻣﻮﺗﻮر ﺷﺎﻣﻞ ﻓﺸﺎر ورودي ) 1/5، 1/25،1( ﺑﺎر، ﻧﺴﺒﺖ ﻫﻢارزي ) 0/7، 0 /5،0 /3( و دور ﻣﻮﺗﻮر ) 1400 ، 1100، 800( دورﺑﺮدﻗﯿﻘﻪ ﺑﺮ ﺷﺎﺧﺼﻪﻫﺎي ﺧﺮوﺟ ﯽ ﻓﺸﺎر درون ﺳﯿ ﻠﻨﺪر و ﺷﺎر ﺣﺮارﺗﯽ اﺳﺘﻔﺎده ﮔﺮد ﯾﺪ. ﻧﺘﺎﯾﺞ ﻣﺪلﺳﺎزي ﺻﻔﺮﺑﻌﺪي ﻧﺸﺎن داد ﮐﻪ در ﺑﯿﺸﺘﺮ ﻣﻮارد ي ﮐﻪ ﻣﻮرد ﺑﺮرﺳ ﯽ ﻗﺮار ﮔﺮﻓﺖ ﺑﻬﺘﺮﯾﻦ ﻗﺎﺑﻠﯿﺖ ﺑﺮاي ﭘﯿﺶﺑﯿﻨ ﯽ ﺷﺎر ﺣﺮارﺗﯽ ﺗﻮﺳﻂ ﻣﺪل آﻧﺎﻧﺪ اراﺋﻪ ﺷﺪ. ﻫﻤﭽﻨﯿ ﻦ ﻣﺪل ﻫﻮﻫﻨﺒﺮگ ﺷﺎر ﺣﺮارﺗ ﯽ را ﺑﯿ ﺸﺘﺮ از ﻣﻘﺪار ﻣﺤﺎﺳﺒﻪ ﺷﺪه ﺗﻮﺳﻂ ﻣﺪل ﺳﻪﺑﻌﺪي ﭘﯿ ﺶﺑﯿﻨﯽ ﻣ ﯽﮐﻨﺪ درﺣﺎﻟ ﯿﮑﻪ ﻣﺪلﻫﺎي آﺳﺎﻧ ﯿﺲ و ﻫﻨﺴﻞ ﺷﺎر ﮔﺮﻣﺎﯾﯽ را ﮐﻤﺘﺮ از ﻣﻘﺪار اراﺋﻪ ﺷﺪه ﺗﻮﺳﻂ ﻣﺪل ﺳﻪﺑﻌﺪي ﺑﺮآورد ﻧﻤﻮدﻧﺪ. ﻋﻼوه ﺑﺮ اﯾﻦ ﻣﺪل وﺷﻨ ﯽ ﻧﻤﯽﺗﻮاﻧﺪ ﺑﺮاي ﻣﺪلﮐﺮدن ﺷﺎر ﺣﺮارﺗ ﯽ در ﻣﻮﺗﻮر اﺷﺘﻌﺎل ﺗﺮاﮐﻤﯽ ﻣﺨﻠﻮط ﻫﻤﮕﻦ ﺑﺎ ﺳﻮﺧﺖ ﮔﺎز ﻃﺒ ﯿﻌﯽ اﺳﺘﻔﺎده ﺷﻮد.
چكيده لاتين :
Homogeneous charge compression ignition (HCCI) has attracted lots of attention due to the
high thermal efficiency, lower NOx, and Soot exhaust emissions. Heat transfer from the gases
to the combustion chamber walls has an effective impact on the combustion process and the
formation of engine-out emissions in the HCCI engine. In this study for the first time, a zerodimensional
single-zone model coupled with detailed chemical kinetics was used to evaluate
the semi-empirical heat transfer models of Annand, Woschni, Hohenberg along with Assanis
and Hensel to calculate heat flux in an HCCI engine fueled with natural gas. For this purpose,
the 3D-CFD model coupled with detailed chemical kinetics was firstly validated by using
experimental data, and then the 3D derived model was used as a base model for evaluating a
zero-dimensional model. Furthermore, the response surface model (RSM) was employed for
investigating the effect of input parameters of the engine including intake pressure (1, 1.25,
and 1.5bar), equivalence ratio (0.3, 0.5, and 0.7), and engine speed (800, 1100, and 140orpm)
on the output parameters i.e., in-cylinder pressure and heat flux. In most cases were assessed,
the zero-dimensional simulation results indicated that the Annand technique provided the
best model for heat flux simulation. Besides, the model of Hohenberg overpredicts the heat
flux in comparison with the calculated values derived from the 3D model, while Assanis and
Hensel models underpredict the heat flux compared with the evaluated value of the 3D model.
Furthermore, Woschni’s model cannot be used to model the heat flux in the HCCI engine