كليدواژه :
اقليم گرم و خشك , انرژي كلي , انرژي بهره برداري , انرژي نهفته , باز استفاده
چكيده فارسي :
پيش بيني 8/9 ميليارد نفر رشد جمعيت جهان تا سال 2050، نياز به انرژي و مصرف بيشتر ذخاير را به دنبال خواهد داشت. با رشد اقتصادي فعلي، منابع سوخت فسيلي تا انتهاي قرن ميلادي حاضر به پايان ميرسد، چون انرژي نقشي اساسي در رشد و توسعه پايداركشورها دارد، جهان با بحران انرژي روبرو خواهد شد. كشور ما از يك سو با پهنه گسترده و در حال توسعه اقليم گرم و خشك روبرو است كه نياز به انرژي برودتي (توليد بار برودتي و نگهداري تجهيزات آن بمراتب گرانتر و با صرف انرژي بيشتري نسبت به بار حرارتي همراه است) زيادي داشته و از سوي ديگر با اقتصادي نفت پايه در سالهاي آتي از ناحيه انرژي مورد تهديد خواهد بود. آمارها حاكي از مصرف 50 تا 60 درصد از انرژي در بخش معماري و شهرسازي هستند و انرژي كلي ساختمان تركيبي متغير از انرژي نهفته و بهرهبرداري ميباشد، هدف مقاله تحليل و بررسي دو بخش اصلي انرژي كلي ساختمان ، يعني انرژي بهرهبرداري و انرژي نهفته، بوده تا بتوانيم با يافتن راهكارهايي مناسب از نگاه انرژي نهفته، مصرف انرژي كلي ساختمان را كاهش دهيم.
روش تحقيق، بررسي و مقايسه مقادير انرژي بهرهبرداري و نهفته در دوره عمر ساختمان ميباشد، چون در كشور ما اندازهگيري دقيق مصرف انرژي نهفته در دوره عمر ساختمان، به دليل فقدان اطلاعات دقيق از مراحل ساخت، مصالح و جزييات، حمل و نقل، تعمير و نگهداري مقدور نيست. بنابراين از چند آزمايش انجام شده در كشورهاي مختلف و بررسي نتايج آنها براي ميزان تاثيرگذاري انواع انرژي در انرژي كلي ساختمان استفاده شدهاست. نتايج حاصل بيانگر اهميت طراحي اوليه معماري و استفاده از جزييات مناسب بهمراه بهبود روشهاي ساخت جهت افزاش عمر ساختمان است، كه البته استفاده از مصالح با انرژي نهفته كمتر، بادوام و روشهاي تعمير و نگهداري مدرن باعث اين افزايش خواهد شد. همچنين مقايسه مصرف انرژي نهفته و بهرهبرداري نشان داد كه افزايش انرژي نهفته ناشي از عايق بندي اضافي و ايجاد اينرسي حرارتي با افزايش ضخامت جدارهها و سقف در طول عمر ساختمان باعث كاهش انرژي كلي از طريق كاهش مصرف انرژي بهرهبرداري خواهد شد.
چكيده لاتين :
A population of 8.9 billion up to 2050 will need more energy and resource. The economic growth accelerates fossil fuel exhaustion by the end of this century. Energy has an important role in sustainable development; therefore, the world will encounter energy crisis. In our country, vast expanse of hot dry climate is extending and so is the need of energy for cooling systems (cooling consumes more energy than heating). On the other hand, sustainability of an Oil-dependant economy will be threatened by energy crisis. Surveys reveal that 50 to 60 percent of energy consumption and also carbon and construction waste production is related to architecture and urban design. Since the total energy of the building is a combination of embodied energy and operational energy this essay aims to analyze them to find the best method for energy use reduction.
Measurement of the embodied energy is not possible in Iran, owing to not having access to accurate information about the process of construction, material, details, transportation, repairs and maintenance. Therefore, some experiments of other countries were studied and their results were used to do this research. Results of this research show the importance of initial design, effective details and improvement of construction methods which can increase the durability of a building. Durable materials with less embodied energy and modern repair and maintenance methods can lead us to this goal. Furthermore, comparing embodied energy with operational energy showed that an increase in the first one, by means of extra insulation, making thermal inertia by increasing width of walls and ceilings will reduce operational energy and as well total energy use.
Comprehensive system of architecture is able to make a wise balance between embodied energy and operational energy through energy-based initial design, designing flexible patterns, using materials with less embodied energy, increasing lifespan of the building, using proper details with reversible dry connections, and modern construction methods. Finally, a proper portion of energy in normal lifespan of a building will lead to reduction of total energy in architecture. Strategies recommended to reduce total energy of the building during its lifespan through decreasing and conserving embodied energy are as follows:
• Initial design with energy saving approach, using long-lasting reversible, flexible, changeable construction and architecture patterns, and using durable materials with least embodied energy in production phase.
• Improving technology efficiency of factories produce materials with least embodied energy, increasing the efficiency of the transportation system, decreasing carrying distance and reusing materials, installation of accessible facilities in the walls, ceilings and floor.
• Improving the knowledge and methods used for splitting the components instead of demolition and using reversible proper construction details by means of dry connections (bolts and nuts) instead of wet connections (mortar, glue and resin).
• Regular wise reconstruction, retrofitting, renovation, repair, maintenance when necessary to increase lifespan of the building.