شماره ركورد :
1262390
عنوان مقاله :
ارزيابي مدل‌هاي شبكه و الگوريتم حسابداري رطوبت خاك مدل HEC-HMS در شبيه‌سازي پيوسته نيمه توزيعي بارش- رواناب در حوضه آبريز جراحي
عنوان به زبان ديگر :
Evaluation of GFF and RBF Neural Network Models and Soil Moisture Accounting Algorithm for HEC-HMS Model in Continuous Semi-Distributed Rainfall-Runoff Simulation in Jarahi Basin
پديد آورندگان :
آذرﭘﯿﺸﻪ، ﻧﻮﯾﺪ داﻧﺸﮕﺎه آزاد اﺳﻼﻣﯽ واﺣﺪ اﻫﻮاز - ﮔﺮوه ﻣﻬﻨﺪﺳﯽ ﻣﻨﺎﺑﻊ آب، اﻫﻮاز، اﯾﺮان , ﻧﯿﮑﺒﺨﺖﺷﻬﺒﺎزي، ﻋﻠﯿﺮﺿﺎ داﻧﺸﮕﺎه آزاد اﺳﻼﻣﯽ واﺣﺪ اﻫﻮاز - ﮔﺮوه ﻣﻬﻨﺪﺳﯽ ﻣﻨﺎﺑﻊ آب، اﻫﻮاز، اﯾﺮان , ﻓﺘﺤﯿﺎن، ﺣﺴﯿﻦ داﻧﺸﮕﺎه آزاد اﺳﻼﻣﯽ واﺣﺪ اﻫﻮاز - ﮔﺮوه ﻣﻬﻨﺪﺳﯽ ﻣﻨﺎﺑﻊ آب، اﻫﻮاز، اﯾﺮان
تعداد صفحه :
19
از صفحه :
93
از صفحه (ادامه) :
0
تا صفحه :
111
تا صفحه(ادامه) :
0
كليدواژه :
اﻟﮕﻮرﯾﺘﻢ PMI , اﯾﺴﺘﮕﺎه ﮔﺮﮔﺮ , آزﻣﻮن ﻫﻤﭙﻞ , ﺿﺮﯾﺐ ﻧﺎش - ﺳﺎﺗﮑﻼﯾﻒ
چكيده فارسي :
ﺑﺮآورد ﺻـﺤﯿﺢ رواﻧﺎب در ﺑﻬﺮهﺑﺮداري ﻣﻨﺎﺑﻊ آب ﺑﺮاي ﺑﺨﺶﻫﺎي ﻣﺨﺘﻠﻒ ﮐﺸـﺎورزي، ﺷـﺮب، ﺑﺮﻗﺎﺑﯽ و زﯾﺴـﺖ ﻣﺤﯿﻄﯽ ﻣﻮﺛﺮ اﺳـﺖ. در اﯾﻦ ﻣﻘﺎﻟﻪ ﺑﻪ ﺷﺒﯿﻪﺳﺎزي ﭘﯿﻮﺳﺘﻪ ﺑﺎرش- رواﻧﺎب در ﺣﻮﺿﻪ ﺟﺮاﺣﯽ ﺑﺎ دو ﻣﺪل ﻣﺨﺘﻠﻒ ﺷﺎﻣﻞ ﻣﺪل ﻣﻔﻬﻮﻣﯽ HEC-HMS و ﻣﺪل ﺑﺮ ﻣﺒﻨﺎي ﭘﺮدازش دادهﻫﺎ )ﺷـﺒﮑﻪﻫﺎي ﻋﺼـﺒﯽ ﻣﺼـﻨﻮﻋﯽ( ﭘﺮداﺧﺘﻪ ﻣﯽﺷـﻮد ﺗﺎ ﺗﻮاﻧﺎﯾﯽ و دﻗﺖ اﯾﻦ دو ﻣﺪل در ﺑﺮآورد رواﻧﺎب ﻧﯿﺰ ارزﯾﺎﺑﯽ ﮔﺮدد. ﺟﻬﺖ ﺷـﺒﯿﻪﺳـﺎزي ﭘﯿﻮﺳـﺘﻪ ﺟﺮﯾﺎن از ﻣﺪل ﺗﻠﻔﺎت اﺣﺘﺴـﺎبﮐﻨﻨﺪه رﻃﻮﺑﺖ ﺧﺎك )SMA( در زﯾﺮﺣﻮﺿـﻪﻫﺎ اﺳـﺘﻔﺎده ﮔﺮدﯾﺪ. ﺑﺮاي واﺳـﻨﺠﯽ ﻣﺪل از آﻣﺎر روزاﻧﻪ ﺑﺎرش، دﺑﯽ ﺟﺮﯾﺎن و ﺗﺒﺨﯿﺮ از ﺳـﺎل 1380 ﺗﺎ 1386 و ﺑﺮاي ﺻـﺤﺖﺳـﻨﺠﯽ ﻣﺪل از ﺳـﺎل 1387ﺗﺎ 1390 اﺳـﺘﻔﺎده ﺷـﺪ. ﻧﺘﺎﯾﺞ ﻧﺸـﺎن داد ﮐﻪ ﻣﺪل HEC-HMS ﺑﻪ ﻫﻤﺮاه ﻣﺪل ﺗﻠﻔﺎت SMAاز ﻗﺎﺑﻠﯿﺖ ﺧﻮﺑﯽ در ﺷـﺒﯿﻪﺳـﺎزي ﭘﯿﻮﺳـﺘﻪ ﺑﺎرش- رواﻧﺎب در ﻓﺼـﻮل ﺧﺸـﮏ و ﺗﺮ ﻣﺘﻮاﻟﯽ در ﺣﻮﺿـﻪ ﺟﺮاﺣﯽ ﺑﺮﺧﻮردار ﻣﯽﺑﺎﺷـﺪ. ﺑﺮاي اﻧﺘﺨﺎب ﻣﺘﻐﯿﺮﻫﺎي ورودي ﻣﻮﺛﺮ ﺑﺮ دﺑﯽ ﺟﺮﯾﺎن در ﺷـﺒﮑﻪﻫﺎي ﻋﺼـﺒﯽ ﻣﺼـﻨﻮﻋﯽ ﺷـﺎﻣﻞ ﺷـﺒﮑﻪ ﭘﯿﺸـﺨﻮر ﺗﻌﻤﯿﻢﯾﺎﻓﺘﻪ )GFF( و ﺷـﺒﮑﻪ ﺗﺎﺑﻊ ﭘﺎﯾﻪ ﺷـﻌﺎﻋﯽ )RBF( از اﻟﮕﻮرﯾﺘﻢ اﻃﻼﻋﺎت ﻣﺘﻘﺎﺑﻞ ﺟﺰﯾﯽ )(PMI اﺳـﺘﻔﺎده ﺷـﺪ. ﻧﺘﺎﯾﺞ ﺑﮑﺎرﮔﯿﺮي اﻟﮕﻮرﯾﺘﻢ PMI ﻧﺸـﺎن ﻣﯽدﻫﺪ ﮐﻪ ﻣﺘﻐﯿﺮ ورودي ﻣﻮﺛﺮ ﺑﺮ دﺑﯽ ﺟﺮﯾﺎن در اﯾﺴـﺘﮕﺎه ﻫﯿﺪروﻣﺘﺮي ﮔﺮﮔﺮ، دﺑﯽ ﺟﺮﯾﺎن ﯾﮏ روز ﻗﺒﻞ در اﯾﻦ اﯾﺴـﺘﮕﺎه ﻣﯽﺑﺎﺷﺪ. ﻧﺘﺎﯾﺞ ﻧﺸـﺎن ﻣﯽدﻫﺪ ﮐﻪ ﺷـﺒﮑﻪ GFF از راﻧﺪﻣﺎن و دﻗﺖ ﺑﯿﺸـﺘﺮي ﻧﺴـﺒﺖ ﺑﻪ ﻣﺪل ﻣﻔﻬﻮﻣﯽ HEC-HMSو ﺷـﺒﮑﻪ RBF در ﺷـﺒﯿﻪﺳـﺎزي ﭘﯿﻮﺳـﺘﻪ ﺑﺎرش- رواﻧﺎب در ﺣﻮﺿـﻪ ﺟﺮاﺣﯽ ﺑﺮﺧﻮردار اﺳـﺖ؛ ﺑﻄﻮري ﮐﻪ ﺿـﺮﯾﺐ ﻧﺎش- ﺳـﺎﺗﮑﻼﯾﻒ ﺑﺮاي ﻣﺪل HEC-HMS و ﺷـﺒﮑﻪ GFF و RBF ﺑﻪ ﺗﺮﺗﯿﺐ 0/6 ، 0/677 و0/676 اﺳﺖ.
چكيده لاتين :
Runoff estimation is effective way in utilization and allocation of water resources for various agricultural, drinking, hydraulic and environmental sectors. In this paper, continuous simulation of rainfall-runoff in the basin with two different models including HEC-HMS conceptual model and data-processing model (artificial neural networks) are considered to evaluate the ability and accuracy of these two models in estimating runoff. The continuous flow simulation was used to calculate soil moisture losses (SMA) in sub-basins. For calibration of the model, daily precipitation, flow, evapotranspiration data from 2001 to 2007 were used and for model accuracy period of 2008 to 2011 were used. The results showed that the HEC-HMS model, along with the SMA model, has a good ability to continuously simulations in dry and continuous periods in the basin. In order to select the input variables that affect the flow rate in artificial neural networks, a generalized feeder grid (GFF) and a radial base function grid (RBF), partial interpolation algorithm (PMI) was used. The results of using the PMI algorithm showed that the input variable influences the flow velocity at the Gargar hydrometric station, the current day flow rate at this station. The results showed that the GFF network has more efficiency and accuracy than the conceptual model of HEC-HMS and RBF network in continuous run-run run simulation in the basin. The Nash coefficient for HEC-HMS and GFF and RBF networks is 0.6, 0.6677 and 0.6676 respectively.
سال انتشار :
1400
عنوان نشريه :
علوم و مهندسي آب
فايل PDF :
8575211
لينک به اين مدرک :
بازگشت