شماره ركورد :
1262796
عنوان مقاله :
ﺑﺮرﺳﯽ ﻣﯿﮑﺮوﺳﮑﻮﭘﯽ اﺛﺮ ﭘﻼﺳﻤﺎي ﺳﺮد ﺑﺮ ﺟﻮاﻧﻪ زﻧﯽ ﺑﺬر ﻧﺨﻮد
عنوان به زبان ديگر :
Microscopic Investigation of Cold Plasma Effect on Chickpea Seed Germination
پديد آورندگان :
ﻓﺮﯾﺪوﻧﯽ، ﻣﺤﺴﻦ دانشگاه بوعلي سينا - دانشكده كشاورزي - گروه مكانيك بيوسيستم، همدان، ايران , ﺣﺎﺟﯽ آﻗﺎﻋﻠﯿﺰاده، ﺣﺴﯿﻦ دانشگاه بوعلي سينا - دانشكده كشاورزي - گروه مكانيك بيوسيستم، همدان، ايران
تعداد صفحه :
10
از صفحه :
231
از صفحه (ادامه) :
0
تا صفحه :
240
تا صفحه(ادامه) :
0
كليدواژه :
ﭘﻼﺳﻤﺎي ﺳﺮد , ﺗﺼﻮﯾﺮ ﻣﯿﮑﺮوﺳﮑﻮﭘﯽ , ﺟﻮاﻧﻪ زﻧﯽ ﻧﺨﻮد
چكيده فارسي :
ﺑﺎ اﻓﺰاﯾﺶ ﺟﻤﻌﯿﺖ ﺟﻬﺎن، ﻧﯿﺎز ﺑﻪ ﺗﻮﻟﯿﺪ ﻣﻮاد ﻏﺬاﯾﯽ ﺑﯿﺸﺘﺮ ﻧﯿﺰ اﻓﺰاﯾﺶ ﻣﯽ ﯾﺎﺑﺪ. ﻓﻨﺎوري ﭘﻼﺳﻤﺎ ﯾﮑﯽ از روش ﻫﺎﯾﯽ اﺳﺖ ﮐﻪ ﻣﯽ ﺗﻮاﻧﺪ رﺷﺪ ﮔﯿﺎه را ﺑﻬﺒـﻮد ﺑﺨﺸﺪ. ﭘﻼﺳﻤﺎي ﺳﺮد در اﻓﺰاﯾﺶ ﺷﺎﺧﺺ ﻫﺎي رﺷﺪ و ﺟﻮاﻧﻪ زﻧﯽ ﻣﻮﺛﺮ اﺳﺖ. در اﯾﻦ ﻣﻘﺎﻟﻪ، ﺗﺄﺛﯿﺮ ﭘﻼﺳﻤﺎي ﺳﺮد ﺑﺮ ﭘﺎﯾﻪ ﺗﺨﻠﯿﻪ ﮐﺮوﻧﺎ ﺑﺮ ﺟﻮاﻧﻪ زﻧﯽ ارﻗﺎم ﻧﺨﻮد ﻋﺎدل، ﻣﻨﺼﻮر و آزاد ﺑﺮرﺳﯽ ﺷﺪ. در روش ﺗﺨﻠﯿﻪ ﮐﺮوﻧﺎ، از ﺧﻼ ﻧﺴﺒﯽ اﺳﺘﻔﺎده ﺷﺪ. ﭘﮋوﻫﺶ ﺣﺎﺿﺮ در ﻗﺎﻟﺐ آزﻣﺎﯾﺶ ﻓﺎﮐﺘﻮرﯾﻞ ﺑﺮ ﭘﺎﯾﻪ ﻃﺮح ﮐﺎﻣـﻞ ﺗﺼـﺎدﻓﯽ اﻧﺠﺎم ﺷﺪ. ﺑﺬرﻫﺎي ﻣﻮاﺟﻪ ﺑﺎ ﭘﻼﺳﻤﺎ و ﺑﺬرﻫﺎي ﺷﺎﻫﺪ در ﺷﺮاﯾﻂ ﯾﮑﺴﺎن ﺑﺮاي ﺟﻮاﻧﻪ زﻧﯽ ﻧﮕﻬﺪاري ﺷﺪﻧﺪ. ﻧﺘﺎﯾﺞ ﻧﺸﺎن داد ﺳﺮﻋﺖ ﺟﻮاﻧﻪ زﻧﯽ در ﺑﺬرﻫﺎﯾﯽ ﮐﻪ ﺑﻪ ﻣﺪت 60 ﺛﺎﻧﯿﻪ ﻣﻮاﺟﻬﻪ ﺑﺎ ﭘﻼﺳﻤﺎي ﺳﺮد داﺷﺘﻨﺪ، ﺑﯿﺸﺘﺮ از ﺑﺬرﻫﺎي ﺑﺪون ﻣﻮاﺟﻬﻪ ﺑﻮد. ﻫﻤﭽﻨﯿﻦ ﺑﺬرﻫﺎي ارﻗﺎم ﻋﺎدل و ﻣﻨﺼـﻮر ﮐـﻪ ﺑـﻪ ﻣـﺪت 30 ﺛﺎﻧﯿـﻪ در ﻣﻮاﺟﻬﻪ ﺑﺎ ﭘﻼﺳﻤﺎي ﺳﺮد ﻗﺮار ﮔﺮﻓﺘﻨﺪ، داراي ﻃﻮل رﯾﺸﻪ ﺑﯿﺸﺘﺮي ﻧﺴﺒﺖ ﺑﻪ ﺑﺬرﻫﺎي ﺑﺪون ﻣﻮاﺟﻬﻪ ﺑﻮدﻧﺪ. ﭘﺲ از ﺗﺠﺰﯾﻪ و ﺗﺤﻠﯿﻞ آﻣﺎري، ﻣﺸﺨﺺ ﺷﺪ ﮐـﻪ ﻃﻮل رﯾﺸﻪ در ﺷﺮاﯾﻂ ﯾﮑﺴﺎن، در ﻣﺪت زﻣﺎن ﻣﻮاﺟﻬﻪ 30 ﺛﺎﻧﯿﻪ در ﻣﻌﺮض ﭘﻼﺳﻤﺎي ﺳﺮد، داراي اﺧﺘﻼف ﻣﻌﻨﯽ داري در ﺳﻄﺢ 5% ﻧﺴـﺒﺖ ﺑـﻪ ﺣﺎﻟـﺖ ﻫـﺎي ﻣﻮاﺟﻬﻪ 60 ﺛﺎﻧﯿﻪ و ﺑﺪون ﻣﻮاﺟﻬﻪ ﺑﺎ ﭘﻼﺳﻤﺎي ﺳﺮد دارد. ﺗﺼﺎوﯾﺮ ﻣﯿﮑﺮوﺳﮑﻮﭘﯽ از ﺳﻄﺢ ﺧﺎرﺟﯽ و ﺑﺎﻓﺖ داﺧﻠﯽ ﺳﻠﻮل ﺑﺬر در ﻧﻤﻮﻧﻪ ﻫـ ﺎ ﻣـﻮرد ﺑﺮرﺳـﯽ ﻗـﺮار ﮔﺮﻓﺖ. ﺑﺮرﺳﯽ ﻫﺎ ﻧﺸﺎن دادﻧﺪ ﮐﻪ ﺳﻄﻮح ﺧﺎرﺟﯽ ﺑﺬرﻫﺎي در ﻣﻌﺮض ﭘﻼﺳﻤﺎي ﺳﺮد ﻧﺴﺒﺖ ﺑﻪ ﺷﺎﻫﺪ ﻫﻤﻮارﺗﺮ، داراي ﺑﺮﺟﺴﺘﮕﯽ ﮐﻤﺘﺮ و زاوﯾﻪ ﺳـﻄﺢ ﺗﻤـﺎس ﮐﻤﺘﺮي ﻫﺴﺘﻨﺪ. اﯾﻦ ﺗﻐﯿﯿﺮ ﻣﯽ ﺗﻮاﻧﺪ ﺧﺎﺻﯿﺖ آب دوﺳﺘﯽ را اﻓﺰاﯾﺶ دﻫﺪ. اﻣﺎ در ﻣﻮاﺟﻬﻪ ﺑﺬر ﺑﺎ ﭘﻼﺳﻤﺎي ﺳﺮد، ﺗﻐﯿﯿﺮي در ﺑﺎﻓﺖ داﺧﻠﯽ ﺳﻠﻮل ﻣﺸﺎﻫﺪه ﻧﮕﺮدﯾﺪ.
چكيده لاتين :
As the world's population grows, more food need to be produced. Plasma technology is one of the methods that can improve plant growth. Cold plasma is effective in increasing growth and germination indices. In this article, the effect of cold plasma based on corona discharge was investigated on germination of Adel, Mansur, and Azad chickpea varieties. Materials and Methods In the corona discharge method, a relative vacuum should be used. Corona discharge is formed when there are pronounced spatial in-homogeneities in the electric field, in particular, when the electric field exceeds the breakdown threshold in a limited spatial region. This commonly occurs when highly asymmetric electrodes are employed, such as a point and a plane. Thermodynamically corona is a very non-equilibrium process, creating a non-thermal plasma. The avalanche mechanism does not release enough energy to heat the gas in the corona region generally and ionize it, as occurs in an electric arc or spark. Only a small number of gas molecules take part in the electron avalanches and are ionized, having energies close to the ionization energy of 1- 3 ev, the rest of the surrounding gas is close to ambient temperature. Corona discharge is a weakly ionized non-equilibrium plasma based on the avalanche mechanism. If it reaches a close distance with a conductive material or increase the electrical field, it can create longer breakdown streamers and eventually create sparks. The system is designed to convert 220V voltage with a frequency of 50 Hz to 12 kV voltage with a frequency of 9 kHz. Two electrodes with a 2 cm distance are in a vacuum chamber with a negative pressure of 20 pounds per square inch. an‎d the samples are placed between two electrodes. Experiment was performed in form of a.factorial experimental design based on a CRD. In this plan, treatments are randomly placed in experimental units. The type of factorial experiment performed is 3×3×2×2 and multiplied numbers are factor levels. Seed production year factor in two levels, moisture factor in two levels, Seed variety factor in three levels, and exposure duration factor in three levels were examined. Plasma-exposed seeds and non-exposed seeds were grown under the same conditions. The samples were selected completely randomly. The samples were wetted 24 hours before exposure. Then all 18 chickpeas were placed in a dish in order to observe proper repetition. Samples from each dish were exposed to cold plasma under the same conditions between samples for a specified period of time. After exposing the samples to cold plasma, samples of all dishes under the same conditions at 30 °C and 300 lux environmental light were examined for germination evaluation. For this purpose, samples of each dish were placed in a cover of cotton cloth. They got wet every 4 hours. After 48 hours, all samples were examined and the root length of each sample was measured. Results and Discussion The results showed that seeds exposed to plasma for 60 seconds had a faster germination speed than those without exposure. Also, seeds that were exposed to plasma for 30 seconds had a longer root length than those without exposure. According to the results of statistical analysis, exposure to cold plasma for 30 seconds has increased root length in Adel chickpea variety up to 12.5% and in Mansour variety up to 18% Conclusion After statistical analysis, appear that root length under the same conditions, during 30 seconds of exposure to cold plasma, is significant at 5% level from non-exposure and 60 seconds of exposure. Microscopic images of samples were examined on the outer surface and inner tissue of seed cell. Studies have shown that the outer surfaces of seeds exposed to cold plasma are smoother, less prominent and smaller contact angle than those without exposure to plasma. This change can increase the hydrophilicity of seeds. But cold plasma had no effect on cell tissue in terms of size and number
سال انتشار :
1401
عنوان نشريه :
ماشين هاي كشاورزي
فايل PDF :
8578224
لينک به اين مدرک :
بازگشت