شماره ركورد :
1269798
عنوان مقاله :
طراحي و ارزيابي يك شبكه عصبي كپسولي جديد براي طبقه بندي نامتوازن
عنوان به زبان ديگر :
Design and Evaluation of a New Capsule Neural Network (CapsNet) for Imbalanced Images Classification
پديد آورندگان :
ﺟﺒﺎري، ﺣﺎﻣﺪ دانشگاه بين‌المللي امام خميني(ره) قزوين - گروه مهندسي برق -كنترل , ﺑﯿﮕﺪﻟﯽ، ﻧﻮﺷﯿﻦ دانشگاه بين‌المللي امام خميني(ره) قزوين - گروه مهندسي برق -كنترل
تعداد صفحه :
15
از صفحه :
1
از صفحه (ادامه) :
0
تا صفحه :
15
تا صفحه(ادامه) :
0
كليدواژه :
طبقه بندي تصاوير , طبقه بندي نامتوازن , ترك هاي سطحي , چندشاخگي , يادگيري عميق , شبكه هاي عصبي كپسولي
چكيده فارسي :
ﻃﺒﻘﻪ ﺑﻨﺪي ﻧﺎﻣﺘﻮازن ﺗﺼﺎوﯾﺮ ﯾﮑﯽ از ﻣﺴﺎﺋﻞ ﻣﻬﻢ و دﺷﻮار در زﻣﯿﻨﻪ داده ﮐﺎوي اﺳﺖ. ﺑﺎ ﻋﺪم ﺗﻮاﻧﺎﯾﯽ اﻟﮕﻮرﯾﺘﻢ ﻫﺎي ﻃﺒﻘﻪ ﺑﻨﺪي اﺳﺘﺎﻧﺪارد، ﺷﺒﮑﻪ ﻫﺎي ﻋﺼﺒﯽ ﮐﭙﺴﻮﻟﯽ ﺑﺎ درﻧﻈﺮ ﮔﺮﻓﺘﻦ ارﺗﺒﺎﻃﺎت ﻓﻀﺎﯾﯽ وﯾﮋﮔﯽ ﻫﺎ، در ﻣﻘﺎﯾﺴﻪ ﺑﺎ ﺳﺎﯾﺮ ﺷﺒﮑﻪ ﻫﺎي ﻋﻤﯿﻖ ﻣﺜﻞ ﺷﺒﮑﻪ ﻫﺎي ﻋﺼﺒﯽ ﮐﺎﻧﻮﻟﻮﺷﻨﯽ ﺑﺴﺘﺮ ﻣﻨﺎﺳﺒﯽ را ﺑﺮاي ﻃﺮاﺣﯽ ﻣﺪل ﻫﺎي ﻃﺒﻘﻪ ﺑﻨﺪي ﻧﺎﻣﺘﻮازن ﻓﺮاﻫﻢ ﻣﯽ ﮐﻨﻨﺪ. ازﻃﺮف دﯾﮕﺮ ﭼﻨﺪﺷﺎﺧﮕﯽ در ﺗﺮك ﻫﺎي ﺳﻄﺤﯽ ﯾﮑﯽ از ﻧﺎﻫﻨﺠﺎري ﻫﺎ و دﺳﺘﻪ ﻫﺎي اﻗﻠﯿﺖ ﻣﻮﺟﻮد در ﺳﺎزه ﻫﺎي ﺑﺘﻨﯽ اﺳﺖ ﮐﻪ ﺗﺸﺨﯿﺺ آن ﻣﯽ ﺗﻮاﻧﺪ در ﻧﮕﻬﺪاري ﺳﺎزه ﻫﺎي ﺑﺘﻨﯽ و ﻣﺪﯾﺮﯾﺖ ﻫﺰﯾﻨﻪ ﻫﺎ ﻣﻮﺛﺮ ﺑﺎﺷﺪ. ﺑﻪ ﻫﻤﯿﻦ ﻣﻨﻈﻮر در اﯾﻦ ﻣﻘﺎﻟﻪ ﯾﮏ ﻣﻌﻤﺎري ﺟﺪﯾﺪ ﺑﺮ اﺳﺎس ﺷﺒﮑﻪ ﻫﺎي ﻋﺼﺒﯽ ﮐﭙﺴﻮﻟﯽ ﺑﺮاي ارزﯾﺎﺑﯽ ﻃﺒﻘﻪ ﺑﻨﺪي ﻧﺎﻣﺘﻮازن ﺗﺼﺎوﯾﺮ ﺗﺮك ﻫﺎي ﺳﻄﺤﯽ در ﺳﺎزه ﻫﺎي ﺑﺘﻨﯽ ﻣﻌﺮﻓﯽ ﺷﺪه اﺳﺖ. ﺑﺮرﺳﯽ و ﻣﻘﺎﯾﺴﻪ ﺷﺒﮑﻪ ﭘﯿﺸﻨﻬﺎدي ﺑﺎ ﺷﺒﮑﻪ ﻫﺎي ﮐﺎﻧﻮﻟﻮﺷﻨﯽ در ﻃﺒﻘﻪ ﺑﻨﺪي ﻣﺘﻮازن و ﻧﺎﻣﺘﻮازن ﺗﺮك ﻫﺎي ﺳﻄﺤﯽ روي 13500 ﻣﺠﻤﻮﻋﻪ ﺗﺼﺎوﯾﺮ ﺟﻤﻊ آوري ﺷﺪه، ﻧﺸﺎن از ﺑﺮﺗﺮي ﺷﺒﮑﻪ ﭘﯿﺸﻨﻬﺎدي داﺷﺖ. ﺷﺒﮑﻪ ﭘﯿﺸﻨﻬﺎدي در ﺑﺮرﺳﯽ اﺛﺮ ﮐﺎﻫﺶ ﺗﻌﺪاد ﺗﺼﺎوﯾﺮ آﻣﻮزش در دﻗﺖ ﻃﺒﻘﻪ ﺑﻨﺪي ﻧﯿﺰ ﺑﺮﺗﺮي ﭼﺸﻢ ﮔﯿﺮي در ﻣﻘﺎﯾﺴﻪ ﺑﺎ ﺷﺒﮑﻪ ﻫﺎي ﮐﺎﻧﻮﻟﻮﺷﻨﯽ از ﺧﻮد ﻧﺸﺎن داد. اﯾﻦ ﺷﺒﮑﻪ ﻃﺒﻘﻪ ﺑﻨﺪي ﻣﺘﻮازن ﺗﺮك ﻫﺎي ﺳﻄﺤﯽ را ﺑﺎ دﻗﺖ 99/56 درﺻﺪ اﻧﺠﺎم داد. ﻫﻢ ﭼﻨﯿﻦ ﺷﺒﮑﻪ ﭘﯿﺸﻨﻬﺎدي ﺗﺎ ﻋﺪم ﺗﻮازن دﺳﺘﻪ اﻗﻠﯿﺖ ﺑﻪ اﮐﺜﺮﯾﺖ 1 ﺑﻪ 8، دﻗﺖ ﺑﺎﻻي 80 درﺻﺪ داﺷﺖ ﮐﻪ ﻧﺴﺒﺖ ﺑﻪ ﺳﺎﯾﺮ روش ﻫﺎ ﺑﺴﯿﺎر ﻣﻨﺎﺳﺐ اﺳﺖ.
چكيده لاتين :
Imbalanced image classification is one of the most important and difficult issues in data mining. With the inability of standard classification algorithms, Capsule neural networks (CapsNet) provide a good platform for designing imbalanced classification models by considering spatial communication of features, compared to other deep networks such as Convolutional Neural Networks (CNN). On the other hand, crack bifurcation in the surface cracks is one of the anomalies and minority categories in concrete structures that can be effective in the maintenance of concrete structures and cost management. Also, the surface crack image sets are suitable data for evaluating imbalanced classification due to their characteristics. Therefore, in this paper, a new architecture based on CapsNet is introduced to evaluate the imbalanced classification of surface crack images in the concrete structures. Examination and comparison of the proposed network with CNN in balanced and imbalanced image classification of surface cracks on 13,500 sets of collected images showed the superiority of the proposed network. Also, the proposed network showed a significant advantage compared to CNN in investigating the effect of reducing the number of training images on classification accuracy. This network performed balanced classification of surface cracks with 99.56% accuracy. Also, the proposed network has an accuracy of 80% up to the imbalance of theminority group to the 1:8 minority, which is very suitable compared to CNN.
سال انتشار :
1401
عنوان نشريه :
ماشين بينايي و پردازش تصوير
فايل PDF :
8585783
لينک به اين مدرک :
بازگشت