كليدواژه :
شكست هيدروليكي , شكست طبيعي , روش المان مجزاء , فشار شكست , نرم افزار كد جريان ذره
چكيده فارسي :
شكست هيدروليكي روشي نوين و پركاربرد جهت استحصال ذخاير و منابع انرژي موجود در اعماق زمين است. با توجه به افزايش مصرف انرژي از يك سو و اتمام ذخاير انرژي از سوي ديگر، در آيندهاي نه چندان دور استفاده از اين روش به عنوان امري ضروري مبدل خواهد شد. پارامترهاي مهم زيادي در اين روش ﺗﺃثيرگذار هستند كه از جملهي آنها ميتوان به فشار و نحوهي اعمال آن به منظور ايجاد شكستگي و پيشرفت درزه درون لايههاي سنگي اشاره نمود. پارامتر مهم ديگر در اين روش، اندركنش ميان شكستگيهاي طبيعي از پيش موجود با زواياي مختلف و شكست هيدروليكي ايجاد شده، ميباشد. با توجه به هزينههاي بالاي اين فرآيند، هدف از انجام اين پژوهش رسيدن به بهينه ترين حالت ممكن براي بيشترين ميزان پيشرفت شكست هيدروليكي و در عين حال استفاده از كمترين مقدار فشار شكست است كه با استفاده از مدلسازي عددي به وسيلهي نرم افزار المان مجزاء PFC از شركت آيتسكا به صورت دو بعدي بر روي نمونه سنگهاي پوچئون گرانيت با رفتار شكننده و مقاومت بالا انجام ميشود. براي ساخت نمونه به روش المان مجزا در نرمافزار PFC از ديسكهاي دايرهاي در دو بعد استفاده ميشود كه اين ذرات به وسيله پيوندهايي با يكديگر در تماس هستند و براي اعمال بارگذاري بر روي نمونه ديوارهايي وجود دارند كه با اين ديسكها در تعامل ميباشند. به منظور ايجاد پيوند ميان ذرات از مدل باند مسطح و براي ايجاد شكستگيهاي طبيعي از پيش موجود از روش شبكه شكستگي استفاده ميشود. با توجه به نتايج به دست آمده مشخص گرديد كه با افزايش نرخ اعمال بارگذاري، نمونه در زمان كمتري به فشار شكست رسيده و شكسته ميشود ولي مقدار فشار شكست افزايش مييابد. همچنين با افزايش زاويه شكست طبيعي نسبت به افق (در جهت ساعتگرد)، نمونه در فشار شكست كمتري شكسته ميشود. در نهايت هم با افزايش فاصله شكست طبيعي از مركز نمونه، تأثير حضور درزه در نمونه كاهش مييابد و فشار شكست به حالت بدون درزه نزديك ميشود
چكيده لاتين :
Hydraulic fracturing is a new and widely used method for extracting reserves and energy resources in the depths of the earth. In the near future, due to increase in energy consumption on the one hand and depletion of energy reserves on the other, using of this method will become a necessity. One of the most important and effective parameters in this process is the pressure and how it is applied in order to create fractures and fracture progression in rock layers. Another important parameter is the interaction between pre-existing natural fractures with different angles and hydraulic fracture.
Due to the high costs of this process, the purpose of this study is to achieve the optimal state for the maximum progress of hydraulic fracture and the lowest amount of breakdown pressure at the same time. Numerical modeling was performed in two dimensions by Particle Flow Code ( PFC ) software from Itasca company on samples of Pocheon granite rocks with brittle behavior using distinct element method. PFC software uses circular disks in two dimensions to construct and make the sample using distinct element method. These particles are in contact with each other through bonds. In this program there are walls that interact with these disks to apply load on the sample. The flat joint model is used in order to create contacts between particles, and discrete fracture network is uded to to create pre-existing natural fractures for interacting with hydraulic fracture.
Given that in the distinct element method (PFC software) our sample consists of a large number of particles in two dimensions that the general characteristics of the sample are formed based on the interaction between these particles, so we need parameters as input data to our software, existing disks and the link between them, to finally obtain the specifications of the same laboratory sample after modeling. These specifications and input data are referred to as micro parameters, and the final specifications, which are the same as our mechanical parameters in the laboratory, are referred to as macro parameters.
To find the micro parameters of the sample we use the trial and error method. Here, our modeling is based on Brazilian and uniaxial compression experiments and … performed by Zhuang et al. laboratory investigations.
Due to the limitations of PFC software for fluid flow modeling and limitations for using of CFD relationships, pressure equals to fluid pressure can be used as a new solution. In this way, by modeling a number of walls that form a complete circle with overlapping each other, and by considering the servo control mechanism, we move them in the opposite direction of their normal vectors and off-center, creating a comprehensive pressure Which is actually same as the fluid pressure. From the obtained results, it was found that with increasing the loading rate, the sample reaches the breakdown pressure and breaks in less time, but the amount of breakdown pressure increases. Also, by increasing the natural fracture angle relative to the horizon (clockwise), the specimen breaks at a lower breakdown pressure. Finally, by increasing the natural fracture distance from the center of the sample, the effect of the presence of the joint in the sample decreases and the breakdown pressure approaches the seamless state.