پديد آورندگان :
نمدچي، اميرحسين دانشگاه آزاد اسلامي واحد مشهد - دانشكدهي مهندسي عمران، ايران , علامتيان، جواد دانشگاه آزاد اسلامي واحد مشهد - دانشكدهي مهندسي عمران، ايران , محمدالهي ارهكمر، حميد دانشگاه آزاد اسلامي واحد مشهد - دانشكدهي مهندسي عمران، ايران
كليدواژه :
تحليل ديناميكي , انتگرالگيري عددي , روش وابسته به سازه , پايداري نامشروط
چكيده فارسي :
رويكردهاي انتگرالگيري عددي براي تحليل ديناميكي را ميتوان به دو دستهي صريح و ضمني تقسيم كرد. پايداري و دقت، دو ويژگي مهم روشهاي اخير هستند. از ديدگاه پايداري عددي، روشهاي مذكور به دو گروه پايدار مشروط و نامشروط دستهبندي ميشوند. با وجود سادگي، روشهاي صريح پايدار مشروط هستند و حجم محاسبات نيز در روشهاي ضمني، عليرغم پايداري نامشروط، به طرز چشمگيري زياد است. در نوشتار حاضر، با بهرهگيري از برتريهاي هر دو دسته، يك روش انتگرالگيري نيمهصريح نوين با پايداري نامشروط بر پايهي روش آلفاي تعميميافته ارائه شده است. اين كار با وابسته كردن عاملهاي وزني الگوريتم پيشنهادي به مشخصات سازه و استفاده از مفهوم ماتريس بزرگنمايي انجام شده است. بر اين اساس، عاملهاي وزني نامعلوم بهگونهيي محاسبه شدهاند كه معادلهي مشخصهي
روش پيشنهادي با روش آلفاي تعميميافته برابر شود. ويژگي مذكور، انطباق ويژگيهاي عددي روش نوين با روش آلفاي تعميميافته را به دنبال خواهد داشت. درستي فرضيات و كارايي رابطهسازي پيشنهادي با تحليل دقت، پايداري و حل پارهيي از نمونههاي عددي انجام شده است. يافتهها، برتري روش پيشنهادي را نسبت به ساير روشهاي مشابه آشكار ساختهاند.
چكيده لاتين :
In structural dynamic analysis, various time integration techniques have been proposed. Generally, these algorithms discretize the time domain into a finite number of intervals and approximate the displacements, velocities, and accelerations via mathematical expressions at each time increment. Based on the structure of these approximations, time integration schemes are classified as explicit and implicit. Explicit schemes are much simpler and often march forward only through pure vector operations. On the other hand, implicit strategies require more computational efforts especially in nonlinear behaviors since they involve solving a system of simultaneous equations at each time step using iterative techniques. Although computationally more expensive, implicit schemes are unconditionally stable, meaning that the growth of solution errors at each time increment remains bounded. On the contrary, explicit techniques suffer from instabilities which manifest as unrealistic growth of amplitude of the responses. To overcome this issue, time step size should be chosen small enough to meet the stability criterion. In this paper, by gathering the advantages of both approach, a new semi-explicit unconditionally stable time integration method based on the well-known implicit Generalized-α (G-α) technique is proposed. To this end, first, the fundamental approximating relationships of the suggested method is introduced for a single degree of freedom system with the unknown integration parameters. Then, using the concept of amplification matrix, these unknown parameters are determined so that the method possesses the same characteristic equation as the G-α technique. This leads to a set of model-dependent integration parameters that are no longer scalar constants. Due to this kind of formulation, similar stability and accuracy behavior are observed when comparing the proposed method with the G-α technique, both analytically and numerically. After generalization of the proposed algorithm to the multi-degree of freedom systems, some numerical examples are solved and comparisons are also made with other similar time integration schemes. Findings reveal the merits of the proposed algorithm over the other well-known time stepping techniques.