عنوان مقاله :
ﻣﺸﺘﻖ ﺗﺎﺑﻊ، ﺗﻌﻤﯿﻢ ﺗﻌﺮﯾﻒ ﮐﺎراﺗﺌﻮدري
عنوان به زبان ديگر :
Derivative of a function, Generalization of the Caratheodory Definition
پديد آورندگان :
ﭘﺎرﺳﯿﺎن، ﻋﻠﯽ داﻧﺸﮕﺎه ﺗﻔﺮش - داﻧﺸﮑﺪه رﯾﺎﺿﯽ
كليدواژه :
ﻗﻀﯿﮥ رول , ﻗﻀﯿﻪ ﻣﻘﺪار ﻣﯿﺎﻧﮕﯿﻦ ﮐﻮﺷﯽ , ﻗﻀﯿﮥ ﻣﻘﺪار ﻣﯿﺎﻧﮕﯿﻦ , ﻗﻀﯿﮥ ﺗﯿﻠﻮر
چكيده فارسي :
ﺗﻌﺮﯾﻒ ﻣﺘﺪاول ﻣﺸﺘﻖ، ﻣﺠﻤﻮﻋﮥ ﺗﺎﺑﻊﻫﺎي ﻣﺸﺘﻖﭘﺬﯾﺮ را ﺑﺴﯿﺎر ﮐﻮﭼﮏﺗﺮ از ﻣﺠﻤﻮﻋﮥ ﺗﺎﺑﻊﻫﺎي ﭘﯿﻮﺳﺘﻪ ﻣﯽﺳﺎزد. ﺑﺴﯿﺎري از ﺗﺎﺑﻊﻫﺎي ﯾﮏ ﻣﺘﻐﯿﺮي ﺑﺎ ﺗﻌﺮﯾﻒ ﻣﻮﺟﻮد ﻣﺸﺘﻖﭘﺬﯾﺮ ﻧﯿﺴﺘﻨﺪ و ﺑﺮرﺳﯽ ﺗﻐﯿﯿﺮات آﻧﻬﺎ ﺑﻪ ﮐﻤﮏ ﺗﻌﺮﯾﻒ ﻣﻮﺟﻮد ﻣﺸﺘﻖ، ﻣﯿﺴﺮ ﻧﯿﺴﺖ. در اﯾﻦ ﻣﻘﺎﻟﻪ، ﺑﺎ اﺳﺘﻔﺎده از ﺗﻌﺮﯾﻒ ﮐﺎراﺗﺌﻮدري، اﺑﺘﺪا ﺑﻪ اراﺋﮥ ﺗﻌﺮﯾﻒ ﻣﺸﺘﻖﭘﺬﯾﺮي ﺗﻌﻤﯿﻢﯾﺎﻓﺘﮥ ﯾﮏ ﺗﺎﺑﻊ ﺣﻘﯿﻘﯽ ﯾﮏ ﻣﺘﻐﯿﺮي, و ﻣﺸﺘﻖ ﺗﻌﻤﯿﻢﯾﺎﻓﺘﮥ آن ﻣﯽﭘﺮدازﯾﻢ، ﺑﻪ ﮔﻮﻧﻪاي ﮐﻪ ﻣﺠﻤﻮﻋﮥ ﺗﺎﺑﻊﻫﺎي ﻣﺸﺘﻖﭘﺬﯾﺮ اﻓﺰاﯾﺶ ﻣﯽﯾﺎﺑﺪ و اﻋﺘﺒﺎر ﻗﻀﯿﻪﻫﺎي اﺳﺎﺳﯽ ﻧﻈﺮﯾﮥ ﺗﺎﺑﻊﻫﺎي ﻣﺸﺘﻖﭘﺬﯾﺮ ﯾﮏ ﻣﺘﻐﯿﺮي، ﻣﺎﻧﻨﺪ ﻗﻀﯿﮥ رول، ﻗﻀﯿﮥ ﻣﻘﺪار ﻣﯿﺎﻧﮕﯿﻦ ﮐﻮﺷﯽ، ﻗﻀﯿﮥ ﻣﻘﺪار ﻣﯿﺎﻧﮕﯿﻦ ﺑﺮاي ﻣﺸﺘﻖ، و ﻗﻀﯿﮥ ﺗﯿﻠﻮر ﺑﺮﻗﺮار ﺑﺎﻗﯽ ﻣﯽﻣﺎﻧﺪ. ﺳﺮاﻧﺠﺎم، ﻣﻘﺎﻟﻪ را ﺑﺎ اراﺋﮥ ﭼﻨﺪ ﻣﺜﺎل ﺑﻪ ﭘﺎﯾﺎن ﻣﯽﺑﺮﯾﻢ.
چكيده لاتين :
The current definition of the derivative makes the set of differentiable functions much smaller than the set
of continuous functions, such that most of the real single variable functions are not differentiable and the surveying the rate of their growth is not possible with the available definition. In the present paper, using Caratheodory definition, we extend the set of differentiable functions by introducing a definition for generalized differentiation of a single variable function and its generalized derivative, in such a way that the validity of the basic theorems of this theory such as Rolle's theorem, Cauchy's mean value theorem, mean value theorem and Taylor's theorem would be hold. Finally we give some examples.
عنوان نشريه :
پژوهش هاي نوين در رياضي