شماره ركورد :
1298838
عنوان مقاله :
بررسي كارايي روش طيف‌سنجي مرئي-مادون قرمز نزديك در تخمين برخي ويژگي‌‌هاي خاك منطقه‌ي سميرم اصفهان
عنوان به زبان ديگر :
Investigating the Efficiency of Visible-Near Infra-Red (NIR) Spectrometry to Estimate Selected Soil Properties in Semirom Area, Isfahan
پديد آورندگان :
رحمتي، فاطمه دانشگاه شهيد چمران اهواز - دانشكده كشاورزي - گروه علوم و مهندسي خاك، اهواز، خوزستان، ايران , حجتي، سعيد دانشگاه شهيد چمران اهواز - دانشكده كشاورزي - گروه علوم و مهندسي خاك، اهواز، خوزستان، ايران , رنگزن، كاظم دانشگاه شهيد چمران اهواز - دانشكده علوم زمين - گروه سنجش از دور و GIS، اهواز، ايران , لندي، احمد دانشگاه شهيد چمران اهواز - دانشكده كشاورزي - گروه علوم و مهندسي خاك، اهواز، خوزستان، ايران
تعداد صفحه :
18
از صفحه :
283
از صفحه (ادامه) :
0
تا صفحه :
300
تا صفحه(ادامه) :
0
كليدواژه :
رگرسيون حداقل مربعات جزئي (PLSR) , رگرسيون ماشين بردار پشتيبان (SVMR) , رگرسيون مؤلفه اصلي (PCR) , شبكه عصبي مصنوعي (ANN) , طيف‌سنجي
چكيده فارسي :
اندازه‌گيري ويژگي‌هاي خاك در يك مقياس وسيع به دليل حجم بالاي نمونه‌برداري و تجزيه‌هاي آزمايشگاهي، زمان‌بر و گران است. بنابراين استفاده از روش‌هاي ساده، سريع، ارزان و پيشرفته مانند طيف‌سنجي خاك مي‌تواند مفيد باشد. اين مطالعه با هدف بررسي كارايي روش طيف‌سنجي در پيش‌بيني برخي از ويژگي‌هاي خاك در منطقه سميرم استان اصفهان انجام شد. به اين منظور تعداد200 نمونه خاك سطحي (10 سانتي‌متري) جمع‌آوري گرديد. مقادير كربن آلي، pH، EC وكربنات كلسيم معادل در آزمايشگاه اندازه‌گيري شدند. همچنين، طيف‌سنجي نمونه‌هاي خاك با استفاده از دستگاه طيف‌سنج زميني FieldSpec3 درمحدوده طول موج 350 تا 2500 نانومتر انجام گرفت. سپس روش‌هاي پيش‌پردازش مشتق اول و مشتق دوم با فيلتر ساويتزكي گلاي و متغير نرمال استاندارد بر روي طيف‌ها انجام شدند. براي برقراري ارتباط بين ويژگي‌هاي خاك با ويژگي‌هاي طيفي آن از مدل‌هاي حداقل مربعات جزئي (PLSR)، رگرسيون مؤلفه اصلي (PCR)، شبكه عصبي مصنوعي (ANN) و رگرسيون ماشين بردار پشتيبان (SVMR) استفاده گرديد. بهترين مدل در برآورد هدايت الكتريكي خاك، كربنات كلسيم و كربن آلي مدل PLSR و براي واكنش خاك مدل SVMR و بهترين روش‌هاي پيش‌پردازش، روش‌هاي مشتق‌گيري بودند كه ضرايب تبيين آن‌ها به ترتيب 94/0، 88/0، 9/0 و 79/0 بودند و تمام برآوردها، كمترين RMSE را نسبت به روش‌هاي ديگر و 2 RPD> داشتند. به طور كلي نتايج اين مطالعه بر قابليت روش طيف‌سنجي مرئي مادون قرمز نزديك در برآورد مكاني چندين ويژگي خاك به صورت همزمان، دلالت دارد. بنابراين، اين روش مي‌تواند به عنوان روشي جايگزين براي روش‌هاي مرسوم آزمايشگاهي در تعيين ويژگي‌هاي خاك مورد استفاده قرار گيرد.
چكيده لاتين :
Introduction  Estimating soil properties on large scales using experimental methods requires specialized equipments and can be extremely time-consuming and expensive, especially when dealing with a high spatial sampling density. Soil Visible and Near-InfraRed (V-NIR) reflectance spectroscopy has proven to be a fast, cost-effective, non-destructive, environmental-friendly, repeatable, and reproducible analytical technique. V-NIR reflectance spectroscopy has been used for more than 30 years to predict an extensive variety of soil properties like organic and inorganic carbon, nitrogen, organic carbon, moisture, texture and salinity. The objectives of this study were to estimate soil properties (carbonate calcium equivalent (CCE), electrical conductivity (EC), pH, and organic carbon (OC)) using visible near-infrared and short-wave Infrared (SWIR) reflectance spectroscopy (350-2500 nm). In this study, the best predictions of all the soil properties, model and pre-processing technique were also determined. The Partial Least Squares Regression (PLSR), Artificial Neural Network, Support Vector Machine Regression and Principal Component Regression (PCR) models were also compared to estimate soil properties. Materials and Methods  A total number of 200 surface soil samples (0-10 cm) were collected from the Semirom region (51º 17' - 52º 3' E; 30º 42' - 31º 51' N), Isfahan, Iran. The samples were air dried and passed through a 2 mm sieve, and using standard procedures soil properties were determined in the laboratory. Accordingly, soil pH and the EC contents of soil samples were determined in saturated pastes and extracts, respectively. The CCE content of the soils were measured using back titration, and the OC contents of the samples were measured using Walkley-Black method. The Reflectance spectra of all samples were measured using an ASD field spectrometer. The selection of the best model was done according to the value of the Ratio of Performance to Deviation (RPD), the coefficient of determination (R2), and the Root Mean Square Eerror (RMSE). Results and Discussion  Once the models were constructed using PLSR, ANN, SVMR and PCR approaches, descriptive analysis was carried out for each property, for the data measured in the laboratory. The parameters calculated for the properties were mean, coefficient of variation (CV), minimum and maximum, standard deviation and range. Coefficient of variation for the organic carbon, CCE, pH, and EC values were 21.7, 12.4, 1.34, and 28.74, respectively. Wilding (1985) proposed low, medium, and high variability for the CV values less than 15%, 15-35%, and greater than 35%, respectively. Accordingly, the organic carbon and EC of soils could be classified in the group with moderate variability. However, the calcium carbonate equivalent and pH are in the group with low variability. Since spectral data preprocessing has an effective role on improving the calibration, in order to perform spectral preprocessing, two first nodes at the first (350-400 nm) and the end (2450-2500 nm) of each spectrum were removed. In addition, two interruptions were eliminated, due to the change in the detector in the range of 900 to 1700 nm. Different preprocessing methods i.e., Standard Normal Variable (SNV) and First (FD) and Second Derivatives (SD) and Savitzky-Golay preprocessing techniques were performed on spectral data. Then, using PLSR, the cross‐validation method was used to evaluate soil properties calibration and validation. According to Stenberg (2002), for agricultural applications, The values of RPD greater than 2 indicate that the models provide precise predictions, the values of RPD between 1.5 and 2 are considered to be reasonably representative, and the values of RPD less than 1.5 indicate poor predictive performance. The results indicated the desirable capability of the PLSR method in estimating the EC (RPD > 2, R2 = 0.94), CCE (RPD > 2, R2 = 0.88), and OC (RPD > 2, R2 = 0.89). The best results of the pH (RPD > 2, R2 = 0.79) were estimated by the SVMR method. In this study the best methods of preprocessing techniques were First (FD) and Second Derivatives (SD) and Savitzky-Golay filter. Conclusion  In general, based on the results of this study, VNIR spectroscopy was successful in estimating soil properties and showed its potential for substituting laboratory analyses. Moreover, spectroscopy could be considered as a simple, fast, and low-cost method in predicting soil properties. The PLSR model with First and Second derivatives and Savitzky-Golay pre-processing techniques seems to be more robust algorithm for estimating EC, OC, and CCE. The best results of the pH were estimated by the SVMR method with First and Second derivatives and Savitzky-Golay pre-processing techniques.
سال انتشار :
1401
عنوان نشريه :
آب و خاك
فايل PDF :
8719752
لينک به اين مدرک :
بازگشت