شماره ركورد :
1302175
عنوان مقاله :
ﺑﺮرﺳﯽ ﻋﻤﻠﮑﺮد ﻣﺪلﻫﺎي ﻣﺨﺘﻠﻒ ﺷﺒﮑﻪ ﻋﺼﺒﯽ ﻣﺼﻨﻮﻋﯽ در ﺑﺮآورد ﺗﻠﻔﺎت ﺗﺒﺨﯿﺮ از ﺗﺸﺖ در ﻣﺤﺪوده درﯾﺎﭼﻪ ﺳﺪ ﺷﻬﯿﺪ رﺟﺎﯾﯽ
عنوان به زبان ديگر :
Evaluation the Performance of Different Models of Artificial Neural Network in Estimating Evaporation Losses from Pan around the Shahid Rajaei Dam Lake
پديد آورندگان :
ﺳﯿﺪي، ﻧﻌﯿﻤﻪ داﻧﺸﮕﺎه ﻋﻠﻮم ﮐﺸﺎورزي و ﻣﻨﺎﺑﻊ ﻃﺒﯿﻌﯽ ﺳﺎري - داﻧﺸﮑﺪه ﻣﻬﻨﺪﺳﯽ زراﻋﯽ - ﮔﺮوه ﻣﻬﻨﺪﺳﯽ آب، ﺳﺎري، اﯾﺮان , ﻓﻀﻞاوﻟﯽ، راﻣﯿﻦ داﻧﺸﮕﺎه ﻋﻠﻮم ﮐﺸﺎورزي و ﻣﻨﺎﺑﻊ ﻃﺒﯿﻌﯽ ﺳﺎري - داﻧﺸﮑﺪه ﻣﻬﻨﺪﺳﯽ زراﻋﯽ - ﮔﺮوه ﻣﻬﻨﺪﺳﯽ آب، ﺳﺎري، اﯾﺮان , ﻣﺴﻌﻮدﯾﺎن، ﻣﺤﺴﻦ داﻧﺸﮕﺎه ﻋﻠﻮم ﮐﺸﺎورزي و ﻣﻨﺎﺑﻊ ﻃﺒﯿﻌﯽ ﺳﺎري - داﻧﺸﮑﺪه ﻣﻬﻨﺪﺳﯽ زراﻋﯽ - ﮔﺮوه ﻣﻬﻨﺪﺳﯽ آب، ﺳﺎري، اﯾﺮان , ﮐﯿﺎء، ﻋﯿﺴﯽ ﺳﺎزﻣﺎن ﺗﺤﻘﯿﻘﺎت، آﻣﻮزش و ﺗﺮوﯾﺞ ﮐﺸﺎورزي - ﻣﺮﮐﺰ ﺗﺤﻘﯿﻘﺎت و آﻣﻮزش ﮐﺸﺎورزي و ﻣﻨﺎﺑﻊ ﻃﺒﯿﻌﯽ ﻣﺎزﻧﺪران - ﺑﺨﺶ ﺗﺤﻘﯿﻘﺎت ﺣﻔﺎﻇﺖ ﺧﺎك و آﺑﺨﯿﺰداري، ﺳﺎري، اﯾﺮان
تعداد صفحه :
18
از صفحه :
179
از صفحه (ادامه) :
0
تا صفحه :
196
تا صفحه(ادامه) :
0
كليدواژه :
ﺗﺒﺨﯿﺮ روزاﻧﻪ , ﺗﺒﺨﯿﺮ ﻣﺎﻫﺎﻧﻪ , ﺗﺸﺖ ﺗﺒﺨﯿﺮ , ﺳﻠﯿﻤﺎنﺗﻨﮕﻪ , ﺳﺎﺧﺘﺎر ﻣﺪل
چكيده فارسي :
ﺗﺒﺨﯿﺮ ﯾﮑﯽ از ﻣﺆﻟﻔﻪﻫﺎي اﺻﻠﯽ ﭼﺮﺧﻪي آب در ﻃﺒﯿﻌﺖ اﺳﺖ ﮐﻪ ﻧﻘﺸﯽ اﺳﺎﺳﯽ در ﻣﻄﺎﻟﻌﺎت ﮐﺸﺎورزي، ﻫﯿﺪروﻟﻮژي، ﻫﻮاﺷﻨﺎﺳﯽ، ﺑﻬﺮهﺑﺮداري از ﻣﺨﺎزن، ﻃﺮاﺣﯽ ﺳﯿﺴﺘﻢﻫﺎي آﺑﯿﺎري و زﻫﮑﺸﯽ، زﻣﺎنﺑﻨﺪي آﺑﯿﺎري و ﻣﺪﯾﺮﯾﺖ ﻣﻨﺎﺑﻊ آب اﯾﻔﺎ ﻣﯽﮐﻨﺪ. در اﯾﻦ ﭘﮋوﻫﺶ ﺗﺮﮐﯿﺐﻫﺎي ﻣﺘﻨﻮﻋﯽ از ﻫﺸﺖ ﻣﺘﻐﯿﺮ ﻫﻮاﺷﻨﺎﺳﯽ ﺑﻪﻋﻨﻮان ورودي ﻣﺪل ﺷﺒﮑﻪ ﻋﺼﺒﯽ ﻣﺼﻨﻮﻋﯽ ﺑﺮاي ﭼﻬﺎر اﯾﺴﺘﮕﺎه ﻫﻮاﺷﻨﺎﺳﯽ اﻃﺮاف ﺳﺪ ﺷﻬﯿﺪ رﺟﺎﯾﯽ ﺷﻬﺮﺳﺘﺎن ﺳﺎري ﻃﯽ ﯾﮏ دوره 10ﺳﺎﻟﻪ ﻣﻮرد ﺑﺮرﺳﯽ ﻗﺮار ﮔﺮﻓﺖ. ﻧﺘﺎﯾﺞ ﺣﺎﺻﻞ از ﺷﺎﺧﺺﻫﺎي آﻣﺎري ﻣﺪلﻫﺎ، دﯾﺎﮔﺮام ﭘﺮاﮐﻨﺶ و ﻣﯿﺰان ﺗﺒﺨﯿﺮ روزاﻧﻪ ﺑﺮآورد ﺷﺪه و ﻣﺸﺎﻫﺪاﺗﯽ ﻧﺸﺎن داد ﮐﻪ در ﻣﺠﻤﻮع روش ﺷﺒﮑﻪ ﻋﺼﺒﯽ ﺗﻮاﻧﺴﺘﻪ اﺳﺖ ﺗﺒﺨﯿﺮ روزاﻧﻪ در ﭼﻬﺎر اﯾﺴﺘﮕﺎه ﻣﻮرد ﻣﻄﺎﻟﻌﻪ را ﺑﺎ دﻗﺖ ﺧﻮﺑﯽ ﺑﺮآورد ﮐﻨﺪ. ﺑﺎ اﯾﻦﺣﺎل ﺑﻬﺘﺮﯾﻦ ﺳﺎﺧﺘﺎر ﻣﺪلﻫﺎي ﺷﺒﮑﻪ ﻋﺼﺒﯽ ﺑﺮاي ﭼﻬﺎر اﯾﺴﺘﮕﺎه ﺳﻠﯿﻤﺎن ﺗﻨﮕﻪ، ﻣﺤﻮﻃﻪ اداره ﺳﺎري، ﻓﺮﯾﻢ ﺻﺤﺮا و ﺗﻠﻤﺎدره ﺑﺎ ﻫﻔﺖ ﻣﺘﻐﯿﺮ ورودي، ﯾﮏ ﻻﯾﻪ ﭘﻨﻬﺎن و ﺑﻪ ﺗﺮﺗﯿﺐ 10 ،8 ،12 و 12 ﻧﺮون ﺑﺮﺣﺴﺐ ﻣﻌﯿﺎرﻫﺎي MSE و R2 اﻧﺘﺨﺎب ﺷﺪﻧﺪ. ﺿﺮﯾﺐ ﻫﻤﺒﺴﺘﮕﯽ در اﯾﺴﺘﮕﺎهﻫﺎي ﺳﻠﯿﻤﺎنﺗﻨﮕﻪ، ﻣﺤﻮﻃﻪ اداره ﺳﺎري، ﻓﺮﯾﻢ ﺻﺤﺮا و ﺗﻠﻤﺎدره ﺑﻪﺗﺮﺗﯿﺐ ﺑﺮاﺑﺮ ﺑﺎ 0/92 ،0/91 ،0/88 و 0/89 ﺑﺮاي دادهﻫﺎي روزاﻧﻪ ﺑﻪدﺳﺖ آﻣﺪ. ﻫﻤﭽﻨﯿﻦ ﻧﺘﺎﯾﺞ ﺣﺎﺻﻞ از ﺷﺒﯿﻪ ﺳﺎزي ﺗﺒﺨﯿﺮ ﻣﺎﻫﺎﻧﻪ ﻧﺸﺎن داد ﮐﻪ روش ﺷﺒﮑﻪ ﻋﺼﺒﯽ ﻣﺼﻨﻮﻋﯽ ﺗﻮاﻧﺴﺘﻪ اﺳﺖ ﺑﺎ دﻗﺖ ﺧﻮﺑﯽ ﺗﺒﺨﯿﺮ ﻣﺎﻫﺎﻧﻪ را ﺑﺎ ﺿﺮﯾﺐ ﻫﻤﺒﺴﺘﮕﯽ ﺑﻪﺗﺮﺗﯿﺐ 0/99 ،0/98 ،0/98 و 0/99 ﺑﺎ ﺳﻄﺢ اﻋﺘﻤﺎد 95 درﺻﺪ ﺑﻪﺗﺮﺗﯿﺐ ﺑﺮاي اﯾﺴﺘﮕﺎهﻫﺎي ﺳﻠﯿﻤﺎنﺗﻨﮕﻪ، ﻣﺤﻮﻃﻪ اداره ﺳﺎري، ﻓﺮﯾﻢ ﺻﺤﺮا و ﺗﻠﻤﺎدره ﺑﺮآورد ﻧﻤﺎﯾﺪ.
چكيده لاتين :
Evaporation is one of the main components of the water cycle in nature, which plays a key role in agricultural studies, hydrology, meteorology, reservoir operation, irrigation and drainage systems design, irrigation scheduling and water resources management. In this study, eight types of meteorological parameters as inputs for estimating evaporation from the pan by artificial neural network for four meteorological stations around Shahid Rajaei Dam were investigated. Meteorological data were collected for ten years from 4 stations around Shahid Rajaei Dam. The results of statistical criteria of the models, distribution diagram and daily evaporation rate were estimated and observations showed that the neural network method was able to estimate the daily evaporation in the four stations with good accuracy. However, the best structure of neural network models for stations of Soleiman Tangeh, Sari office, Farim Sahra and Telamadreh with seven input variables, one hidden layer and 12, 8, 10 and 12 neurons, respectively, were selected according to MSE and R2 criteria. MSE and R2 criteria were selected. The correlation coefficients for daily data in Soleiman tangeh, Sari office, Farim Sahra and Telmadreh stations were extracted 0.88, 0.91, 0.92 and 0.89, respectively. Also, the results of monthly evaporation simulation showed that the artificial neural network method was able to calculate the monthly evaporation with correlation coefficients of 0.98, 0.98, 0.99 and 0.99 with 95% confidence level for Soleiman Tangeh, Sari office, Farim Sahra and Telamadreh stations, respectively.
سال انتشار :
1401
عنوان نشريه :
مهندسي آبياري و آب ايران
فايل PDF :
8730351
لينک به اين مدرک :
بازگشت