كليدواژه :
گسل نرمال , پي سطحي , مدلسازي عددي , عمق رسوبات
چكيده فارسي :
در زلزلههاي اخير، گسيختگي ناشي از گسلش خرابيهاي زياي را براي سازههاي مهندسي به همراه داشته است. تحقيقات نسبتاً زيادي نيز در اين خصوص بصورت آزمايشگاهي و عددي انجام شده است. در اين تحقيقات، با توجه به محدوديتهايي كه وجود داشته است عمق رسوبات بالاي سنگ بستر بصورت محدود درنظر گرفته شده است. از آنجايي كه امكان تأثير اين پارامتر بر روي رفتار اندركنشي سازهها و گسل وجود دارد، در اين مقاله به بررسي عددي تأثير عمق رسوبات بر روي اندركنش يك پي سطحي و گسل نرمال پرداخته شده است. در اين خصوص، چهار عمق 15، 20، 30 و 40 متري لحاظ شدهاند. نتايج نشان ميدهند كه در شرايط ميدان آزاد براي خاك شل، تقريباً تفاوتي در محدوده زون گسلش براي اعماق مختلف رسوبات وجود ندارد. اما براي خاك متراكم، عليرغم اينكه زون تحت تأثير گسلش براي اعماق مختلف يكسان است اما گودال ثقلي براي اعماق بيشتر رسوبات مشاهده ميشود. در مدلهاي اندركنشي نيز مشاهده شده است كه شكل كلي مكانيسم اندركنش پي و گسل براي دو حالت خاك متراكم و شل ثابت باقي مانده است اگرچه مشابه شرايط ميدان آزاد، گودال ثقلي به عنوان يكي از مخاطرات در مدل با عمقهاي بيشتر خاك متراكم مشاهده شد. همچنين، نتايج نشان ميدهند كه براي تخمين مقادير دوران پي بهتر است كه مدلسازي با عمقهاي رسوبات در حدود 20 متر و بيشتر انجام پذيرد.
چكيده لاتين :
Shallow sediments and large displacement of the fault in bedrock can make the fault activity may appear to be
surface faulting. Propagation of the fault rupture through the soil layer is one of the hazards associated with
the fault dislocation in bedrock. The ruins from the 1999 earthquakes in Turkey and Taiwan and the 2008
earthquake in Wenchuan of China clarified the effect of fault rupture on the structures located near the fault
trace on the ground surface. Also, previous studies have revealed the destructive effects of the impact of surface
faulting on a structure. It seems that the alluvium depth can affect the interaction between the structures and
faults. Therefore, the present study used a numerical model validated with centrifuge test results to evaluate
the effect of alluvium depth on the response of shallow foundation-normal fault interaction. The MohrCoulomb constitutive law, with internal friction angle and dilation angle softening behavior, was used to model
the interaction. The alluvium depth was considered as 15, 20, 30, and 40 m. The foundation was assumed to
be rigid in all cases. It was placed at different positions relative to the free field fault outcrop on the ground
surface. Normal faulting also was applied pseudo-statically to the model boundaries at a dip angle of 60°. The
rotation of foundation and the vertical displacement profile of the ground surface was investigated to evaluate
the effect of alluvium depth on the fault rupture and foundation interaction. The results show that there is no
difference between the free-field faulting zones for different alluvium depths of loose soil. A graben is formed
for deeper alluvium depths of dense soil in agreement with the analytical models, although the width of faulting
zones is the same for different alluvium depths. It should be noted, a graben may form in a low-angle dipping
normal fault (i.e. <60°) for loose sand. In interaction models, it has been observed that the interaction
mechanism of the foundation and fault remains constant for both dense and loose sands. The footwall, gapping,
and hanging wall mechanisms were formed for all alluvium depths related to the position of the foundation.
Also, a graben was observed as one of the hazards associated with the normal fault rupture and shallow
foundation interaction in the deeper alluvium depth of dense soil. By increasing the weight of the structure,
the foundation experienced more rotation for 15 and 20m alluvium depths. The reliable foundation rotation
could be estimated by considering alluvium depths of 20 m and more for both dense and loose sands