چكيده فارسي :
كشت ريزجلبك به دليل توده زيستي بالا، توليد چربي، حذف كربن، كشت در اراضي غيرقابل استفاده و طيف گستردهاي از محصولات نهايي مورد توجه قرار گرفته است و تحقيق در خصوص افزايش بهرهوري و كاهش هزينهها، تجاريسازي موجب تسهيل كشت اين موجودات ميشود. امروزه به دليل هزينه بالاي سنتز محيط كشت در مقياس صنعتي از فاضلاب بهعنوان محيط كشت ارزان و قابلدسترس استفاده شده و همچنين تصفيه فاضلاب و توليد بيوديزل از مزيتهاي ديگر اين سيستم است. هدف اين پژوهش بهينهسازي رشد و كيفيت زيستتوده ريز جلبك بومي كلرلاسوروكينيانا با استفاده از نانو ماده آمينوكليمنيزيم در محيط كشت فاضلاب شهر ساري بود. در اين تحقيق تجربي با بهرهگيري از روش پاسخ سطح – طراحي مركزي[1] (RSM-CCD) تأثير سه فاكتور دما، شدت نور و غلظت نانو ماده بر وزن خشك زيستتوده، نرخ رشد مخصوص، مقادير كلروفيل و كارتنوئيد در محيط كشت فاضلاب در 12 ساعت روشنايي و 12 ساعت خاموشي موردبررسي قرار گرفت. آناليز نتايج نشان از افزايش وزن خشك زيستتوده، نرخ رشد مخصوص، كلروفيل و كارتنوئيد به ترتيب معادل 47.13, 30.26, 81.33 36.47%درصد در شرايط بهينه دماي 20 درجه سانتيگراد، شدت تابش 2000 لوكس و مقدار 0.05 گرم در ليتر نانو ماده آمينوكليمنيزيم نسبت به نمونه شاهد حاصل شد. همچنين به منظور قابليت اجرايي بودن پژوهش حاضر شرايط آزمايش در فاضلاب واقعي انجام شد
چكيده لاتين :
Nanoscience is one of the most important borders and the development of research in modern science.
Nanoparticles (NPs) offers many advantages because of their unique physical size and nature. Because the
extensive NPs application in biomedical, biotechnology, engineering, material science, and environmental
fields, a lot of attention has been given to prepare for various types of NP. Water is one of the maximum critical
basis in our life that need to be conserved due to the increased population. Industrial and human activity causes
an increase in biological and chemical contaminants. Availability of water and its utilization by 2030 may be
a 40% water deficit. Conventional methods are generally applied to wastewater treatment through dripping
filters and efficient activated mud eliminates organic pollutants but is not practical for inorganic problems.
However, it is necessary to develop a profitable approach to treat wastewater and reach nutritional recovery.
Due to considerable carbon removal, high on-site biomass, and lipid production compared to traditional
agriculture, and a wide range of final products, recent research has focused on the facile commercialization of
Microalgae by increasing productivity and cost-effectiveness. Nowadays, wastewater is used as an inexpensive
and easy-accessible culture medium rather than expensive culture medium synthesis on large scale, therefore,
simultaneous wastewater treatment and production of biodiesel from microalgae can be considered
sustainable, cost-effective, and environmentally friendly approach. The advantage of using microalgae is that
they grow in watery media and unsavory water on non-arable ground, have fast growth possible and many
species have an oil amount in the dry weight range of 20 to 50% biomass, bio fixation of waste CO2, obtained
nutrients from wastewater. The magnesium amino clay (MgAC) nanoparticle, which Mann introduced, is
attractive among other nanoparticles in enhancing microalgae growth due to the functionality of propyl amine,
structure, and high disparity in water. In this regard, the present study is aimed to optimize the growth and
biomass quality of Chlorella sorokiniana pa.91 microalgae from Sari wastewater culture medium using
Magnesium Aminoclay nanomaterial (MgAC). In this study by application of the surface response method -
central design, the effect of temperature, light intensity, and nanomaterial concentration was investigated on
the parameters including the dry weight of biomass on the seventh day, specific growth rate, chlorophyll, and
carotenoids in wastewater after 12 h exposure to visible light. Under 37 μmol photons, m-2 s-1 radiation
intensity, and in the presence of 0.05 g/L of magnesium aminoclay NM at 20 °C, the optimal condition including
biomass dry weight, specific growth rate, chlorophyll, and carotenoids increased by 47.13, 30.26, 81.33 and
36.47% respectively compared to the control sample. Also, to make the present study feasible, the test
conditions were performed in real wastewater. Producing high biomass concentrations under the influence of
MgAC-NPs. By using MgAC-NPs in small amounts, in addition to increasing the growth rate, we obtained
the treatment of wastewater and increased microalgae lipids. Furthermore, the mechanism for pigment
production as specific production per cell, and lipid extraction is explained based on physiological
characteristics and C. S P.A 91. In addition, by using MgAC-NPs and reducing the temperature and light
intensity, we also saved energy.