كليدواژه :
اتصال X شكل , بارگذاري كششي , سخت كننده حلقوي بيروني , مقاومت استاتيكي , رابطه تحليلي
چكيده فارسي :
در اين مقاله، اثر سختكننده حلقوي بيروني بر روي مقاومت نهايي، سختي اوليه و مودهاي خرابي اتصالات لولهاي X شكل تحت بار محوري كششي بررسي شده است. در مرحله اول، مدل المان محدود ساخته و دقت آن با نتايج آزمايشگاهي مقايسه شده است. پس از اطمينان از دقت مدلسازي، 143 مدل المانمحدود جهت بررسي اثر مشخصات هندسي سختكننده و اتصال بر روي رفتار استاتيكي ساخته شد. در مدلهاي عددي، اثر غيرخطي مصالح و هندسه لحاظ گرديده است. همچنين، جوش متصلكننده اعضاي فرعي به عضو اصلي مدلسازي شده است. نتايج نشان ميدهد، سختكننده حلقوي بيروني ميتواند مقاومت نهايي اتصال تحت بار كششي را تا 189 درصد افزايش دهد. عليرغم اثر محسوس سختكننده بر روي مقاومت نهايي، سختي اوليه و همچنين مودهاي خرابي، مطالعه بر روي اين اتصالات تنها محدود به سه نمونه بوده است. همچنين، تاكنون هيچ رابطهاي جهت محاسبه مقاومت نهايي اتصالات X شكل با سختكننده حلقوي بيروني تحت كشش معرفي نشده است. بنابراين، پس از انجام مطالعات پارامتريك حاضر، رابطه تحليلي براي محاسبه مقاومت نهايي اتصالات سخت شده تحت بار كششي استخراج شده است. همچنين، دقت رابطه ارائهشده با استاندارهاي دپارتمان انرژي بريتانيا مورد ارزيابي قرار گرفته است
چكيده لاتين :
Tubular members, due to their convenient equipment installation and high-strength performance, are widely
applied in the support system of offshore platforms such as jack-ups and jackets. In most steel tubular
structures; the circular hollow section (CHS) members are mainly joined using welding. Commonly, one or
more braces are welded directly onto the surface of a chord member to form that so named welded connection.
So far, some techniques to improve the performance of tubular connections have been proposed. Most of these
methods (e.g., internal ring, doubler plate) can only be used for structures during the design, but there are only
a few techniques (e.g., outer ring, FRP) which can be applied during both fabrication and service. This paper
studies the static strength of CHS X-joints reinforced with external ring subjected to axially tensile load. The
SOLID186 in ANSYS version 21 was used to establish the finite element (FE) models of the tubular X-joints.
Validation of the FE model with experimental data showed that the present FE model can accurately predict
the static behavior of the external-ring stiffened and un-stiffened tubular X-joints under tension. Afterwards,
143 FE models were generated and analyzed to investigate the effect of the joint geometry and the external
ring size on the ultimate strength, failure mechanisms, and initial stiffness through a parametric study. In these
models, both geometric and material non-linearity were considered. Moreover, the welds joining the chord and
brace members were modeled. Results indicated that the ultimate strength of the ring stiffened X-joints under
brace tension can be up to 289% that of the ultimate strength of the corresponding un-stiffened joint. Also, the
increase of the β (the ratio of the brace diameter to chord diameter) results in the increase of the ultimate
strength and initial stiffens (in a fixed chord diameter). Because, the increase of the β leads to the increase of
the brace diameter. The increase of this member results in the increase of the joints stiffness. In addition, the
decrease of the γ (the ratio of the chord radius to chord thickness) leads to the remarkable increase of the
ultimate strength. Also, the increase of the τ (the ratio of the brace to chord thickness) leads to the increase of
the ultimate strength (in a fixed chord thickness). However, it is not remarkable. Moreover, the comparison
between failure modes of reinforced and un-reinforced joints showed that the ring can significantly improve
the failure mechanisms. Also, the ring can remarkably increase the initial stiffness. Despite this significant
difference between the ultimate strength, failure mode, and initial stiffness of unreinforced and ring reinforced
X-joints under brace tension, the investigations on this type of the reinforced joints have been limited to only
three X-joint tests. Also, no design equation is available to determine the ultimate strength of X-joints
reinforced with the external ring. Therefore, the geometrically parametric study was followed by the nonlinear
regression analysis to develop an ultimate strength parametric formula for the static design of ring stiffened
X-joints subjected to brace tension. The proposed formula was evaluated based on the UK DoE acceptance
standard.