عنوان مقاله :
تقسيم بندي حلقه هاي بدون ساختار براي مدلهاي اجزاء محدود با استفاده از شبكه هاي عصبي مصنوعي
عنوان به زبان ديگر :
Partitioning of Unstructured Finite Element Meshes Using Artificial Neural Networks
پديد آورندگان :
بحريني نژاد، اردشير نويسنده ,
اطلاعات موجودي :
دو ماهنامه سال 1384
رتبه نشريه :
فاقد درجه علمي
كليدواژه :
شبكه هاي عصبي مصنوعي , Unstructured Finite Element Meshes , Artificial neural networks , اجزاء محدود , تقسيم بندي , پردازش موازي , مهندسي صنايع , حلقه بندي توافقي
چكيده لاتين :
In this paper the use of neural networks for partitioning of adaptive, unstructured finite element meshes for parallel time-stepping finite element analysis is presented. The concept of mean filed annealing and its use in finding approximate solutions to combinatorial optimization problems is investigated. The application of mean field annealing neural network for the partitioning of finite element meshes is described. This partitioning is based on the recursive bisection approach. The mapping of the mesh bisection problem onto a recurrent neural network is presented. The use of a trained backpropagation neural network which can estimate the number of elements which will be produced inside each coarse element of a finite element mesh after mesh refinement is described. The solution quality and the computational time of solutions are demonstrated using a case study.
عنوان نشريه :
مجله بين المللي علوم مهندسي - دانشگاه علم و صنعت ايران
عنوان نشريه :
مجله بين المللي علوم مهندسي - دانشگاه علم و صنعت ايران
اطلاعات موجودي :
دوماهنامه با شماره پیاپی سال 1384
كلمات كليدي :
#تست#آزمون###امتحان