عنوان مقاله :
پيش بيني قيمت طلا با بكارگيري مدل تركيبي مدل هاي خود رگرسيون ميانگين متحرك انباشته كلاسيك با منطق فازي
عنوان به زبان ديگر :
Gold Price Forecasting Using a Hybrid Auto-Regressive
Integrated Moving Average Models and Fuzzy Logic
پديد آورندگان :
خاشعي، مهدي نويسنده - Khashei, M , بيجاري، مهدي 1343 نويسنده فني و مهندسي Bijari, M
اطلاعات موجودي :
دوفصلنامه سال 1387
كليدواژه :
رگرسيون فازي , مدل ميانگين متحرك خود رگرسيون انباشته فازي , قيمت طلا , مدل هاي تركيبي , مدل هاي ميانگين متحرك خود رگرسيون انباشته , Fuzzy Regression , Time series forecasting , Combined forecast , Gold price , Auto-Regressive Integrated Moving Average , پيش بيني
چكيده لاتين :
Priceless metals such as gold. silver and platinum are one of the most effective variables on financial systems
and forecasting them is very important for economic decision makers. Rapid changes of under-study systems
in real world and specifically in financial markets have created problems for forecasters in order to collect
the necessary data. Quantitative forecasting models such as Auto-Regressive Integrated Moving Average
(ARlMA) models and Artificial Neural Networks (ANNs) need a large amount of historical data in order to
yield accurate results. Fuzzy forecasting models such as fuzzy regression are suitable models in less-data
situations; however, their performance is not always satisfactory. Using hybrid models or combining several
models has become a common practice in order to overcome the limitations of the single models and
improve the forecasting accuracy. In this paper, a hybrid ARlMA and fuzzy logic model (FARlMA) is
proposed in order to overcome the data limitation of ARIMA models and obtain more accurate result.
Empirical results of gold price forecasting indicate that the proposed model can be an effective way to
predict the interval changes of gold price.
عنوان نشريه :
مجله پژوهشي علوم انساني دانشگاه اصفهان
عنوان نشريه :
مجله پژوهشي علوم انساني دانشگاه اصفهان
اطلاعات موجودي :
دوفصلنامه با شماره پیاپی سال 1387
كلمات كليدي :
#تست#آزمون###امتحان