عنوان مقاله :
بهبود عملكرد الگوريتم آناليز مولفه هاي مستقل در تحليل داده هاي تصويربرداري عملكردي مغناطيسي مغز به كمك فيلترهاي زماني و مكاني
عنوان به زبان ديگر :
Improving the Performance oflCA Algorithm for fMRI Simulated Data
Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
پديد آورندگان :
برومند، آمنه نويسنده دانشكده پزشكي-دانشگاه علوم پزشكي تهران Boroomand, A. , احمديان، علي رضا نويسنده گروه فيزيك و مهندسي پزشكي-دانشگاه علوم پزشكي تهران و مركز تحقيقات علوم و تكنولوژي در پزشكي تهران Abmadian, A.R. , عقابيان، محمدعلي نويسنده دانشگاه علوم پزشكي تهران-مركز تحقيقات علوم و تكنولوژي در پزشكي تهران Oghabian, M.A.
اطلاعات موجودي :
فصلنامه سال 1386 شماره 14
كليدواژه :
آناليزمولفه هاي مستقل , تصويربرداري عملكردي مغز , Temporal Filter , فيلترهاي مكاني , Independent Component Analysis , فيلترهاي زماني , Functional MRI , spatial filtering
چكيده لاتين :
The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the
presence of noise and artifact sources. A common solution in for analyzing fMRl data having high noise
is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing
methods on the parametric methods such as general linear model (GLM) have previously been evaluated
methods such as. In this study, besides the comparison of simple and noisy Independent Component
Analysis (lCA) algorithms, the quantity effects of some spatial and temporal filtering have been
evaluated on the functionality of ICA algorithms. Noisy ICA algorithms perform with a higher accuracy
(up to 16%) in comparison to simple ICA for noisy fMRI data, although it is more time consuming than
simple ICA. The accuracy of the results is improved by 8-10% using spatial and temporal filtering prior
to simple lCA.
Materials and Methods: Simple ICA and noisy ICA methods have been compared for analyzing
simulated fMRI data sets. The impact of some temporal and spatial filters on the functionality of simple
ICA algorithms has been evaluated. Implemented filters have been proposed in low and high pass group.
Results: The sensitivity, specificity and temporal accuracy of simple ICA algorithms has been improved
by using high pass filters. Although low pass filtering has some positive effects on the performance of
simple ICA algorithms in the low SNR levels, in the high signal-noise Ratio (SNR) levels these low pass
filters may cause a decrease in the sensitivity, specificity and temporal accuracy of simple KʹA methods.
Discussion and Conclusion: The results obtained from simple and noisy leA algorithms for analyzing
fMRI data having high SNR levels are approximately similar. Infomax algorithm uses Gradient based
methods for estimating unmixing matrix has better sensitivity, specificity and temporal accuracy than
Fast ICA for analyzing noisy ICA data. An alternative to the complicated and time consuming noisy KʹA
algorithms is to preprocess and denoise fMRI data prior to analyzing it by simple ICA algorithms.
اطلاعات موجودي :
فصلنامه با شماره پیاپی 15 سال 1386
كلمات كليدي :
#تست#آزمون###امتحان