شماره ركورد :
416552
عنوان مقاله :
بررسي قابليت داده هاي رقومي سنجنده ETM در تفكيك تيپهاي جنگلي (مطالعه موردي: منطقه لفور سواد كوه)
عنوان به زبان ديگر :
Investigation on the capability of digital data of ETM+sensor in seperating of forest types (Case study: Lafoor area of Savadkooh)
پديد آورندگان :
رشيدي، فرحناز نويسنده دانشگاه آزاد اسلامي- واحد علوم و تحقيقات تهران RASHIDI, F. , بابايي كفاكي، ساسان نويسنده دانشگاه آزاد اسلامي-واحد علوم و تحقيقات تهران Babaiy Kafaki, S , اولادي، جعفر 1334 نويسنده كشاورزي و دامپزشكي OWLADI, J.
اطلاعات موجودي :
فصلنامه سال 1388 شماره 35
رتبه نشريه :
علمي پژوهشي
تعداد صفحه :
13
از صفحه :
51
تا صفحه :
63
كليدواژه :
تصحيحات هندسي , ضريب كاپا , تيپ بندي , صحت كلي , Ground truth , سنجنده + ETM , geometric correction , Classification , طبقه بندي , Overall accuracy , forest type mapping , نقشه واقعيت زميني
چكيده لاتين :
This study was carried out in order to investigate the capability of digital data of ETM+ sensor in separation of forest types in Gazoo district of Lafoor area in Savadkooh. The bands were controlled according to radiometric and geometric errors, separately. Band I, was omitted because of the existence of radiometric error and its less importance in vegetation cover study. Geometric correction was performed by 21 ground control points with OEM, up to crtho rectification level with precision of less than half pixel (0.3 pixel). Thc supervised classification was performed by using basic and synthetic bands to 6 classes, (pure beech type, mixed beech type, mixed hornbeam, road and non eovered area, persimmon, mixed broad leaf). Ground truth map prepared through sampling in 24% of whole area, Thc highest overall accuracy was belong to maximum likelihood classifieation for 6 classes which was 38.29% and Kappa coefficient was 27.7%. Six vegetation types were merged because of radiometric mixing, therefore classification with 5 classes was performed again. Accuracy assessment of classification results indicated that the highest overall accuracy and Kappa coefficient werc 53.22% and 34,71%, respectively. Results showed that the ML classification increases %15 of overall accuracy and %7 in Kappa coefficient. Overall, using ETM+ data is not so appropriate in thc studies which the map type is considered as a base map with maximum number of existing type in the area. Tn order to increase the classification accuracy, using of other classification methods like object-base method and the other information and multitemporal data is suggestible.
سال انتشار :
1388
عنوان نشريه :
تحقيقات جنگل و صنوبر ايران
عنوان نشريه :
تحقيقات جنگل و صنوبر ايران
اطلاعات موجودي :
فصلنامه با شماره پیاپی 35 سال 1388
كلمات كليدي :
#تست#آزمون###امتحان
لينک به اين مدرک :
بازگشت