شماره ركورد :
427491
عنوان مقاله :
بهبود عملكرد پيش بيني هاي مالي با تركيب مدلهاي خطي و غيرخطي خودرگرسيون ميانگين متحرك انباشته و شبكه هاي عصبي مصنوعي
عنوان به زبان ديگر :
Improving Forecasting Performance of Financial Variables by integrating Linear and Nonlinear ARIMA and Artificial Neural Networks (ANNs) Models
پديد آورندگان :
خاشعي، مهدي نويسنده دانشگاه صنعتي اصفهان,دانشكده مهندسي صنايع; Khashei, M , بيجاري، مهدي نويسنده دانشگاه صنعتي اصفهان,دانشكده مهندسي صنايع; Bijari, M
اطلاعات موجودي :
فصلنامه سال 1387
رتبه نشريه :
علمي پژوهشي
تعداد صفحه :
18
از صفحه :
83
تا صفحه :
100
كليدواژه :
مدلهاي خودرگرسيون ميانگين متحرك انباشته (ARIMA) , مدلهاي تركيبي , بازارهاي مالي , پيش بيني نرخ ارز , شبكه هاي عصبي مصنوعي (ANNs)
چكيده لاتين :
The evolution of financial data shows a high degree of volatility of the series, coupled with increasing difficulties of forecasting financial variables. Some alternative forecasting methods, based on the literature review, have been developed, which can be particularly useful in the analysis of financial time series. Despite of the numerous time series forecasting models, the accuracy of time series forecasting is fundamental to many decision processes. Selecting an efficient technique in unique situations is very difficult task for forecasters. Many researchers have integrated linear and nonlinear methods in order to yield more accurate results. In practice, it is difficult to determine the time series under study are generated from a linear or nonlinear underlying process while many aspects of economic behavior may not be pure linear or nonlinear. Although both ARIMA and Artificial Neural Networks (ANNs) models have the flexibility in modeling a variety of problems, none of which is universally the best model used indiscriminately in every forecasting situation. In this paper, based on the foundations of ARIMA and ANNs models, a hybrid method is proposed to forecast exchange rate. Empirical results indicate that integrating linear and nonlinear ARIMA and Artificial Neural Networks (ANNs) models can be an effective way to improve forecasting accuracy achieved by either of the above linear and nonlinear models used separately.
سال انتشار :
1387
عنوان نشريه :
پژوهشهاي اقتصادي (رشد و توسعه پايدار)
عنوان نشريه :
پژوهشهاي اقتصادي (رشد و توسعه پايدار)
اطلاعات موجودي :
فصلنامه با شماره پیاپی سال 1387
كلمات كليدي :
#تست#آزمون###امتحان
لينک به اين مدرک :
بازگشت