عنوان مقاله :
طراحي يك سامانه بازشناسي براي رده بندي سيگنال هاي قلب بر اساس تبديل موجك و شبكه هاي عصبي احتمالي
عنوان به زبان ديگر :
ECG Signals Classification Based on Wavelet Transform and
Probabilistic Neural Networks
پديد آورندگان :
موذن، ايمان نويسنده دانشگاه صنعتي اصفهان، دانشكده برق و كامپيوتر Moazzen , iman , احمدزاده، محمدرضا نويسنده دانشگاه صنعتي اصفهان، دانشكده برق و كامپيوتر ahmad zadeh, mohammad reza
كليدواژه :
الكتروكارديوگرام , تبديل موجك , هيستوگرام , شبكه هاي عصبي احتمالي
چكيده لاتين :
In this paper a very intelligent tool with low computational complexity is presented for Electroencephalogram (ECG) signal classification. The proposed classifier is based on Discrete Wavelet Transform (DWT) and Probabilistic Neural Network (PNN). The novelty of this approach is that signal statistics, morphological analysis and DWT of the histogram of signal (density estimation) altogether have been used to achieve a higher recognition rate. ECG signals and their density estimation are decomposed into sub-classes using DWT. A PNN is used to classify ECG signals using statistical discriminating features which are extracted from ECG and its sub-classes. Experimental results on five classes of ECG signals from MIT-BIH arrhythmia database show that the proposed method learns very fast, low computational complexity, and a very high performance compared to the previous methods.
كلمات كليدي :
#تست#آزمون###امتحان