شماره ركورد :
479415
عنوان مقاله :
استفاده از شبكه عصبي مصنوعي در برآورد حجم در جاي هيدروكربن
عنوان به زبان ديگر :
Estimation of Original Hydrocarbon in Place via Neural Network
پديد آورندگان :
رحيمي بهار، علي اكبر نويسنده rahimi bahar, ali akbar
اطلاعات موجودي :
فصلنامه سال 1388 شماره 121
رتبه نشريه :
علمي پژوهشي
تعداد صفحه :
111
از صفحه :
171
تا صفحه :
281
كليدواژه :
شبكه عصبي , حجم درجا , تخلخل , مدل سازي مخزن , اشباع آب , تخمين , روش مونت كارلو
چكيده لاتين :
Accurate estimation of hydrocarbon volume in a reservoir is important due to future development and investment on that reservoir. Estimation of Oil and Gas reservoirs continues from exploration to end of reservoir time life and is usual upstream engineerʹs involvements. In this study we tried to make reservoir properties models (porosity and water saturation) and estimate reservoir volume hydrocarbon based on artificial neural network tools, petrophysical and geophysical data. So with gridding the reserve, separate it to same volume cells. Based on porosity and lithology variation in wells, constructed petrophysical zonation in each well and by correlation these zones in wells reservoir has been zoned. Porosity, water saturation and 3D seismic data have been averaged in cells and assigned one value for each cell. At final a three layer perceptron neural network by back propagation error algorithm has been designed and trained by using cells which had petrophysical data; then these parameters have been estimated in other cells and original hydrocarbon in place calculated and compared with results from Mont Carlo method.
سال انتشار :
1388
عنوان نشريه :
نشريه دانشكده فني دانشگاه تهران
عنوان نشريه :
نشريه دانشكده فني دانشگاه تهران
اطلاعات موجودي :
فصلنامه با شماره پیاپی 121 سال 1388
كلمات كليدي :
#تست#آزمون###امتحان
لينک به اين مدرک :
بازگشت