پديد آورندگان :
حيدري، نادر نويسنده Heydari, N. , احمدي، محمد تقي نويسنده . Ahmadi, M. T
كليدواژه :
Finite element , Heat conduction , Thermal cracks , Tensile stress , المان محدود , انتقال حرارت , تنش كششي , سدبتن غلتكي , هيدراسيون سيمان , Cement hydration , Environmental condition , شرايط محيطي , ترك حرارتي , RCC Dam
چكيده فارسي :
چكيده- بتن ماده اي است كه ذاتا" در برابر كشش، ضعيف است و به دليل تغيير حجم ناشي از تغيير دما، در آن تنش هاي كششي
ظاهر مي شود كه در حالات بحراني سبب بروز ترك مي شود. به همين دليل موضوع تنش هاي حرارتي و ترك هاي ناشي از آن در
سدهاي بتن غلتكي اهميت ويژه اي دارد. از ويژگي هايي كه در بررسي اين مسيله بسيار مهم است ولي كمتر به آن توجه شده، لحاظ
كردن تغييرات ضريب هدايت حرارتي و مدول الاستيسيته بتن نسبت به دما، تغييرات مقاومت بتن لايه ها نسبت به عمر آن ها،
مدل سازي ميزان توليد حرارت هيدراسيون سيمان به صورت متغير با زمان، مدل سازي برنامه زماني اجراي سد و در نظر گرفتن
شرايط مرزي همرفت و تابش براي سطوح شامل تابش خورشيدي است. اين پژوهش از موارد نادري است كه در آن سعي شده به
همه اين ويژگي ها افزودن بر مسيله ي اثر حرارت محيطي، به طور هم زمان توجه شود تا با اعتماد بيشتري بتوان در مورد ساخت ايمن
و اقتصادي اين نوع سدها تصميم گرفت. سرعت هاي مختلف اجرا، شروع اجرا در فصول گرم و سرد سال و توقف اجرا در ماههاي
سرد و گرم سال، پيش سرد كردن مصالح به عنوان پارامترهاي موثر در نظر گرفته شده است. براي مدل سازي و تحليل گذرا و همراه
6) به گونه اي ويژه بهره گرفته شده است. از نتايج اين / اندر كنش انتقال حرارت و توسعه تنش از نرم افزار المان محدود (انسيس 1
پژوهش مي توان به پايين بودن راندمان پيش سرد كردن، موثر بودن وقفه در ماههاي گرم سال در كنترل ترك حرارتي و تاثير ناچيز
وقفه در ماه هاي غير از فصل گرما در توزيع نهايي دما و بيشينه ي دماي بدنه سد اشاره كرد . همچنين اگر از يخ زدگي مصالح
جلوگيري شود، شروع بتنريزي و اجرا در زمستان، نسبت به فصول ديگر مناسبتر است. بحرانيترين زمان شروع اجراي بتن ريزي،
فصل گرما است.
چكيده لاتين :
Mass concretes including roller-compact concrete are materials with poor tensile behavior.
When subjected to shrinkage or heat in their very early ages such concretes may easily crack.
Thus for controlling and minimizing the risk of thermal cracks, it is crucial to study the
effects of such parameters as the rate of concrete pouring in construction layers, seasons of
start, pause of construction, and the extent of pre-cooling of concrete materials. Therefore,
thermal stresses and probable cracks should be controlled based on a sound construction
schedule. In practice, most cases are dealt with using a simple one-dimensional analysis
pertaining only internal concrete evolution and thus disregarding the surface concrete story.
At the same time, the induced surface stresses are not accounted for in such analyses.
However, as a minimum requirement, a two dimensional model of the dam body across its
vertical section is needed to account for the main effects mentioned above. Despite that many
analyses have been carried out by others so far, in this research, concrete thermal conductivity
coefficient is considered as a function of concrete temperature throughout a transient heat
conduction analysis. The material is assumed as isotropic in both thermal and mechanical
senses. The topology of model as well its top boundaries are continuously updated according
to the construction schedule. Furthermore, accounting for the dam construction schedule, heat
generation due to both ambient and cement hydration phenomena, as well as inclusion of
convection and radiation boundary conditions due to solar effects are considered. In addition,
when dealing with stress analyses and safety evaluation against cracks, the dependencies of
concrete elasticity modulus on time and temperature, and concrete compressive as well as
tensile strengths on time (i.e., the ages of layers) are all considered. Indeed, the thermal
analyses are carried out after performing each single layer. Also after every 10 layers are
performed, a full stress analysis is conducted under the current thermal and gravity loads.
Safety factors are calculated considering the material properties and strength available at the
same instance in each layer.
To study the effect of these parameters on heat generation, and the subsequent thermal
stresses in the body of RCC dam, "THA-DAN" dam in Thailand was chosen as a benchmark
introduced by ICOLD. This dam has been built of 160 layers of 30 centimeter thickness.
Program ANSYS-6.1 was employed in a special manner to allow such a coupled transient
Abstracts
140
analysis for both thermal and stress parts.
Initially, a basic verification of calculated temperatures versus the measured ones (as provided
by ICOLD) was done for the layered construction at the dam site. The results of this study
showed that maximum hydration temperature occurs at the layers poured in the hottest season.
The efficiency of pre-cooling techniques is rather low, because by each 5?C pre-cooling, only
1?C drop in the temperature of internal concrete and 0.3 MPa drop in tensile stresses are
gained. Tensile stresses are concentrated on the free surfaces of the concrete as well as on the
ground interface due to constraints. This happens at a 3-4 meter thick layer there due to the
high thermal gradients. Inclusion of gravity load in the stress analyses helps reducing the
tensile stresses, particularly near the ground. Furthermore, if the frost of concrete materials
could be avoided, winter would be the most efficient season for starting the construction. The
most critical case is to start the construction in summer. Elongated construction pause in hot
seasons is very effective for controlling the thermal cracks, although it has only negligible
effect in cold season on the final distribution of heat and the maximum temperatures induced
in the dam body. It is interesting to notice that the lower is the speed of concrete pouring, the
cooler the core concrete becomes. At lowest speeds the warm core approaches to the ground
surface. Although the above observations were found through a single dam being
investigated, but they could also be mostly true for most of the gravity type RCC dams.