عنوان مقاله :
آشكارسازي اتوماتيك تغييرات ساختمان ها ناشي از زلزله با استفاده از تركيب داده هاي برداري و تصاوير ماهواره اي با مقياس بزرگ
عنوان فرعي :
Automatic change detection of buildings using high resolution satellite imagery and vector dataset
پديد آورندگان :
ولدان زوج، محمد جواد نويسنده دانشيار دانشكده نقشه برداري Valadanzouj, Mohammad javad , كياورز مقدم، مجيد نويسنده ,
اطلاعات موجودي :
فصلنامه سال 1390 شماره 1
كليدواژه :
ژنتيك , ساختمان , سنجش از دور , قدرت تفكيك مكاني بالا , QickBird , آناليز بافت , GIS , تخريب , آشكار سازي تغييرات , زلزله
چكيده فارسي :
تعيين ميزان تخريب ساختمان ها در مدت زمان كوتاهي پس از وقوع زلزله،نقش مهمي در برنامه ريزي جهت اعزام گروه هاي امداد رساني در محل حادثه دارد.بدين منظور نياز به اطلاعات مكاني از قبل و بعد از وقوع زلزله مي باشد كه در اين تحقيق،از نقشه مربوط به قبل و تصوير ماهواره اي مربوط به بعد از زلزله استفاده مي شود و با استفاده از باند هاي طيفي و آناليز بافت،فضاي توصيف براي پيكسل هاي ساختماني تشكيل شده و با استفاده از الگوريتم ژنتيك فضاي توصيف بهينه ايجاد مي شود و پيكسل ها با دو روش طبقه بندي بيشترين شباهت و شبكه عصبي براي دو كلاس تخريب و عدم تخريب طبقه بندي مي شوند و دقت طبقه بندي حاصل از اين دو روش مقايسه مي شوند به طوري كه دقت كلي طبقه بندي به روش بيشترين شباهت 97 درصد و به روش شبكه عصبي 99 درصد براي داده هاي چك بدست مي آيند.درنهايت پلي گون هاي ساختماني بر اساس تعداد پيكسل هاي تخريب شده هر پلي گون به سه كلاس تخريب بالاي 70%،تخريب بين 30%تا70% و تخريب زير 30% تقسيم مي شوند.
چكيده لاتين :
Damage building assessment after an
earthquake is an essential analysis for saving
people and their assets. For doing this, it is
needed to have before and after earthquake
spatial data. The aim of this study to assess
the building damage distribution in the
urban area of Bam, Iran, using postearthquake
QuickBird high-resolution
optical satellite images and before
earthquake vector map to produce a damage
map.This paper investigates the effect of
spectral and texture features for detecting
damage buildings from after earthquake
QuickBird image and select optimum
features using of genetic algorithm then, the
pixels in the each building area are classified
with ML and ANN classification method as
ANN classifiers resulted better classification
accuracy with 99% overall accuracy rather
than ML 97% overall accuracy on check
data. Finally all buildings are classified in
three classes: Upper 70% damage, between
30% to 70% damage and lower 30%
damage.
Abstracts of Papers in English
simple DLT, are in use. However, the great
difficulties with these formulations are their
dependence on large number of well
distributed GCPs. The most precise generic
model which is used as a substitute for
rigorous model is rational function model. It
has been proven that RFMs in terrain
independent mode, which is calculated by
fitting to rigorous model, have the accuracy
of rigorous model. Nevertheless, a very
interesting parametric approach, which uses
simple 2D to 3D affine transformation, has
been experimentally proven to be very
promising. This approach has been already
evaluated by different researchers
worldwide and reasonably accurate results
in both flat and hilly terrains have been
reported using only few numbers of GCPs.
The theoretical basis that justifies the
achieved accuracy is the fact that with the
high resolution satellite images the very
small camera field of view and the high
altitude makes the incoming signals almost
parallel. This renders the perspective
geometry along the scan lines to approach
the parallel geometry and effectively a
homogenous geometry in the scan line and
the direction of the satellite motion is
produced. This particular geometry provides
a simple linear relationship between the
image space and the object space and makes
a simple eight parameters affine
transformation optimum for geo referencing
applications. Simplicity of the formulation
(i.e. only eight affine parameters for the
entire scene and linear form of the
equations), few numbers of required GCPs
and the achieved accuracy makes this
approach very attractive from the mapping
point of view. Affine transformation is
followed, along terrain independent RFMs,
by many investigators who claimed that it
has the potential to achieve high accuracy
same as RFMs. This paper shows and
discusses the fitting accuracy of affine
model, applying for Cartosat-1 images over
Roodehen city in Iran, to rational terrain
independent model and concentrates on its
limitations then works on different
correction models, topography and curvature
correction, to improve planimetric as well as
altimetric accuracies.
عنوان نشريه :
علوم و فنون نقشه برداري
عنوان نشريه :
علوم و فنون نقشه برداري
اطلاعات موجودي :
فصلنامه با شماره پیاپی 1 سال 1390
كلمات كليدي :
#تست#آزمون###امتحان