عنوان مقاله :
تصحيح استاتيك با استفاده از تشخيص كانال كور
عنوان فرعي :
Static correction using blind channel identification
پديد آورندگان :
سياه كوهي، حميدرضا نويسنده موسسه ژئوفيزيك، دانشگاه تهران siah kouhi, hamid reza , سيدآقاميري، سيد حسين نويسنده كارشناسي ارشد ژيوفيزيك، گروه فيزيك، دانشكده پسران دزفول، دانشگاه فني و حرفه اي Seyed Aghamiry, Hossein
اطلاعات موجودي :
فصلنامه سال 1393 شماره 0
كليدواژه :
noise subspace , Time shift , Static correction , تشخيص كانال كور , تصحيح استاتيك , جابهجايي زماني , زيرفضاي نوفه , Blind channel identification
چكيده فارسي :
تغييرات در لايههاي نزديك سطح زمين ميتواند بسيار پيچيده باشد و دامنه و زمان رسيد امواج بازتابي از افقهاي هدف را بهطور كامل بههم بريزد. معمولاً محاسبه و حذف اين نوع جابهجاييهاي زماني از امواج بازتابي با تصحيح استاتيك و تصحيح استاتيك باقيمانده عملي ميشود. روشهاي مرسوم تصحيح استاتيك براي محاسبه و حذف اين جابهجاييهاي زماني، به اطلاعات سرعت و عمق لايههاي نزديك سطح نياز دارد. لازم به ذكر است كه اين روشها از مدلهاي ساده، براي تشرح لايهبندي نزديك سطح استفاده ميكنند كه اغلب از واقعيت زمين دور هستند.
در اين مقاله شيوه ديگري براي تصحيح استاتيك عرضه ميشود كه بهلحاظ نظري خيلي شبيه به واهماميخت است ولي برخلاف آن به هيچگونه فرضي در مورد موجك، نحوه توزيع مرز لايهها و نوفه نياز ندارد و بهطور كامل از اطلاعات ثبت شده براي تصحيح استاتيك استفاده ميكند. همچنين در مقايسه با روشهاي مرسوم براي تصحيح استاتيك، نيازي به مدل لايهبندي نزديك سطح زمين ندارد. در اين روش آشفتگيهاي نزديك سطح، بهمنزله كانالهايي تلقي ميشوند كه با استفاده از نظريه تشخيص كانال كور (به روش زيرفضاي نوفه جزيي) تعيين ميشوند و جابهجاييهاي زماني لازم براي تصحيح استاتيك از راه محاسبه جابهجايي مورد نياز براي بيشينه شدن همبستگي كانالها بهدست ميآيد. توانمندي روش روي دادههاي مدل زمين مصنوعي و دادههاي لرزهاي صحرايي ارزيابي شد. اين روش علاوه بر تصحيح جابهجاييهاي زماني، منجر به بهبود قابلتوجهي در همدوسي از ردلرزهاي به ردلرزه ديگر هم شد. همچنين رخدادهاي بازتابي را كه قبل از اِعمال اين روش به سختي قابل شناسايي بودند، تقويت شدند.
چكيده لاتين :
Near-surface variations can be very complex and may distort amplitudes and arrival times of the reflections events from target reflectors. Near-surface complexities include topographic variations, near-surface irregularities, variations in soil conditions and the weathered layer.
These perturbations generally have a significant impact on seismic recordings. Although there is a general agreement that near-surface distortions are very complex and we usually rely on a rather simplified parameterization to compensate for these perturbations. Determinatin of time shifts is generally referred to as static corrections and residual static correction. Underlying concept of static corrections is the assumption that a simple time shift of an entire seismic trace will yield the seismic record that would have been observed if the geophones had been placed on the reference datum. Hence, static time shifts corrections are assumed to be surface consistent. Surface consistency means that the effects associated with a particular source or receiver affect all wave types similarly, regardless of the direction of propagation.
Conventional methods of static time shift corrections need information on velocities and depths of near-surface layers to determine and compensate the time shifts. These methods rely on simple models for near-surface layers.
In this paper, we develop an approach to compensate for complex time shift using blind channel identification, as it does not use near-surface information. The blind channel identification deals with the recovery of either the input signal or the channel response from the observed transmitted signal only. This method differs from conventional methods for seismic deconvolution. The latter resolve the undetermined nature of the problem by making assumptions about the reflectivity sequence (whiteness, sparsity) and/or the seismic wavelet (minimum phase/ zero phase). The blind channel identification method does not rely on these assumptions. It uses multichannel recordings to fully constrain the problem and is therefore purely data driven.
Many recent blind channel estimation techniques exploitsubspace structures of observation. The key idea in subspace methods of blind channel identification that the channel vector (or part of the channel vector) is in a one dimensional subspace of a block of noiseless observations. These methods, which are often referred to as subspace algorithms, have the attractive property that the channel estimates can often be obtained in a closed form from optimizing a quadratic cost function.
We use blind channel identification to estimate for near-surface source and receiver perturbations. These perturbations are parameterized as finite-impulse response (FIR) filters, and are referred to as the channels. Because the channels describe the near-surface perturbations, we can estimate time shifts from correlation of the channels.
We applied the method to synthetic data and to part of a field data set acquired in an area with significant near-surface heterogeneity. The application of new static corrections greatly improves the trace-to-trace consistency in prestack data. The procedure delineates reflection events that are difficult to detect prior to the application of new static corrections. Based on these results, we conclude that the new static corrections can successfully remove complex time shifts from land seismic data. The field data example demonstrates that the new static corrections can greatly enhance the imaging capabilities of land seismic data.
عنوان نشريه :
فيزيك زمين و فضا
عنوان نشريه :
فيزيك زمين و فضا
اطلاعات موجودي :
فصلنامه با شماره پیاپی 0 سال 1393
كلمات كليدي :
#تست#آزمون###امتحان