عنوان مقاله :
پيش بيني نسبت جذب سديم آب با استفاده از مدل تلفيقي شبكه عصبي و تبديل موجك (مطالعه موردي: ايستگاه رودبار رودخانه سفيدرود)
پديد آورندگان :
رجايي، طاهر نويسنده , , جعفري، حميده نويسنده ,
اطلاعات موجودي :
فصلنامه سال 1395 شماره 2/2
كليدواژه :
رودخانه سفيدرود , جذب سديم , شبكه عصبي , تبديل موجك , برنامه ريزي ژنتيك
چكيده فارسي :
One of the most important factors of sustainable development of watersheds is qualitative and
quantitative availability of suitable water resources. In this study, the artificial neural network (ANN),
multi - variable linear regression (MLR), genetic programming (GP) and hybrid wavelet -ANN
(WANN) models were considered for modeling the monthly sodium absorption ratio (SAR) in
Sefidrud River - Roudbar Station, and the effect of data preprocessing on model performance was
investigated using the discrete wavelet Transform method. For this purpose, observed time series of
river discharge and SAR were decomposed into several sub - time series at different scales by discrete
wavelet transform. Then these sub - time series were introduced as inputs to the ANN model. The
results showed that the hybrid wavelet - neural network model was more suitable for predicting
maximum SAR values than the MLR, ANN, and GP models. Furthermore, the hybrid model could
simulate the hysteresis phenomenon for SAR modeling rigorously, while multi linear regression
method was incapable of detecting it.
عنوان نشريه :
دانش آب و خاك
عنوان نشريه :
دانش آب و خاك
اطلاعات موجودي :
فصلنامه با شماره پیاپی 2/2 سال 1395
كلمات كليدي :
#تست#آزمون###امتحان