پديد آورندگان :
بيرانوند، فاطمه دانشگاه رامين خوزستان - گروه علوم دامي , بيگي نصيري، محمدتقي دانشگاه رامين خوزستان - گروه علوم دامي , مسعودي، عباس دانشگاه لرستان - دانشكده كشاورزي - گروه علوم دامي , شعباني نژاد، عليرضا دانشگاه صنعتي شاهرود - گروه گياهپزشكي
كليدواژه :
ANN , مدلهاي غيرخطي , گوسفند لري , شبكه عصبي مصنوعي
چكيده فارسي :
زمينه مطالعاتي: در اين پژوهش از اطلاعات تعداد 7054 راس گوسفند نژاد لري براي برازش منحني رشد اين نژاد استفاده شد. هدف: صفات رشد مورد بررسي شامل وزن تولد، از شيرگيري، شش ماهگي و نه ماهگي بود كه با استفاده از سه مدل غير خطي شامل گمپرتز، برودي و لجستيك و همچنين شبكه عصبي مصنوعي (ANN) برازش شد. روش كار: تيپ تولد، جنسيت، سال تولد، سن مادر و فصل تولد به همراه وزن تولد، شيرگيري و شش ماهگي به عنوان عوامل ورودي به ANN معرفي شدند و براي وزن نه ماهگي پيش بيني انجام شد. براي اين منظور يك شبكه Feed-forward بهينه شده با الگوريتم ژنتيك مورد استفاده قرار گرفت. مقايسه مدلهاي غيرخطي بر اساس ضريب تبيين (R2)، ميانگين مربعات خطا (MSE)، تعداد تكرار و معيار آكائيك (AIC) انجام شد و بر اين اساس مدل برودي به عنوان مدل مناسب براي برازش صفات رشد انتخاب شد. پارامترهاي A، B و K بر اساس مدل برودي براي دو جنس ماده و نر برآورد شدند. نتايج: همبستگي بين پارامترهاي A و K منفي گزارش شد. اثر عوامل محيطي بر روي پارامترهاي منحني رشد معني دار بود (۰/۰۱>P). بر اساس بررسيهاي انجام شده ANN با R2 برابر با 36/84 و 49/85 درصد قادر به پيش بيني وزن نه ماهگي براي جنس ماده و نر بود. همچنين با تعداد 10 و 9 نورون در لايه مياني براي جنس ماده و نر، در MSE همگرايي ايجاد شد. نتيجهگيري نهايي: بر اساس ميزان R2 گزارش شده، مدلهاي برودي، لجستيك، گمپرتز و ANN به ترتيب مناسبترين مدلها براي برازش صفات رشد در گوسفند لري بودند.
چكيده لاتين :
Introduction: Machine learning methods such as
artificial neural network (ANN) are already widely
used in agriculture because these methods are fast, powerful and flexible tools for classification and
forecasting requirements. In the field of animal science, these methods are used for the detection of
mastitis, estrous and removal reasons of animals (Shahinfar et al. 2012).
ANN
is
a machine learning
method that simulates brain function.
The most important advantage
of
ANN
is
related to its ability
to accept large volumes of data and find interesting and
complex relationships between these data.
Feed
-
forward neural network is a type of neural network training methods that is a training monitored.
The network contains neurons that are composed of several layers. The first layer of input data, the
last laye
r of the data is output, and between these two layers are hidden layers.
In this way the genetic
algorithm is programming technique that uses a process of genetic evolution as a problem solving
model (
Ahmed and Simonovic
2005).
Non
-
linear regression models
are developed form of classical
models. This models are includes fixed and random effects that used to describe the growth of their
data (
Bahreini Behzadi
et al. 2014).
Often growth traits of livestock described by non
-
linear growth
models such as Gompert
z,
Logistic
,
Richards
, Weibull, Brody and
von Bertalanffy
(Aman Ullah et
al. 2013)
. Material
and
m
ethods
:
The data for this research was related to number of 7054 Lori sheep and
including birth weight, weaning weight, weight six and nine months of age that were collected by the
Agricultural Organization of the Lorestan province between the years 2001 to 2010 y
ears. This data
was related to nomadic herds in the Khorramabad city. At first, this data was edited using Excel 2010
and Fox Pro 3 (
Hentzen
1995) software. To check the normality of the data, the software SAS
(Institute SAS 2004) univariate procedures was
used. Also for evaluation of growth traits, Gompertz,
Brody and Logistics models were used.
These models were performed by non
-
linear procedure
(PROC NLIN) and the Gauss
-
Newton Iterative methods using SAS 9.2 (2003) software and then
the growth paramete
rs were calculated. Different models were validation and compared with each
other based on the coefficient of determination (R
2
), mean squared error (MSE), the number of
iteration and Akaike information criterion (AIC).
In the ANN environmental effects
such as sex of
lamb, type of birth, birth season, birth year, mother's age and birth weight, weaning weight and weight
at six months of age were introduced as input to the neural network and ultimately weight at nine
months of age was predicted.
When neura
l network structure was formed, Mean Square Error (MSE)
was used to evaluate and determine the optimal number of neurons in the middle layer.
Results and discussion
:
Compare models based on the coefficient of determination shows that the
models are not muc
h different from each other and coefficient of determination range was varied
between 96.79 to 98.84 percent. The highest R
2
for male and female was related to the Brody model.
High R
2
and low iteration for all 3 models show that these models are suitable
to describe the growth
curve of Lori sheep. Year of birth, birth type, lamb sex, mother age and birth season had significant
effect on the A, B and K parameters (P<0.01).
In this study, in all 3 models the growth rate of females (0.017 ± 0.0003 to 0.026 ±
0.0004) was higher than the growth rate in males (between 0.016 ± 0.006
to 0.022 ± 0.0005). The difference in growth rates in males and females in Lori sheep is down and
f
emales have higher growth rates and, consequently, lower maturity weight. The Matlab
software was
used to implement neural network code and calling the information and their implementation. the
neural network with 8 inputs including birth weight, weaning and six months and fixe effects was
formed.
Conclusion
:
Based on
R
2
in this study sugge
st that the Brody model is the best model for fit the
growth traits and also three models of Brody, Logistic and Gompertz have the higher performance
for forecasting and analysis of growth traits in Lori sheep than ANN.
The birth and weaning weights
and th
e other growth traits in Lori lambs
is impressed by
the change in weather conditions, followed
b
y changes in natural conditions.