كليدواژه :
جهتگيري پيشرونده , ضربه , حركت زمين در نزديك گسل , ساختمانها بهشكل سري , حركت پرتابي
چكيده فارسي :
در پژوهش حاضر، مدل سادهيي از ساختمانها بهشكل سري، شامل 3 ساختمان مجاور 3، 2، و 3 طبقه، تحت مولفههاي افقي و عمودي حاصل از حركات موازي گسل و عمود بر گسل با بزرگا و اختلاف فازهاي مختلف مورد بررسي قرار گرفته است. براي مدلهاي مذكور نتايج نشان ميدهند: 1- نيروي ضربه ميتواند سبب افزايش بيشينهي نيروي برش طبقات شود و اين افزايش در ساختمانهاي كناري، كه از يك طرف ضربه ميخورند، چشمگيرتر از ساختمان مياني، كه از دوطرف ضربه ميخورد، است. 2- با افزايش فاصلهي اوليه بين ساختمانها، لزوماً ضربه كاهش نمييابد و بسته به فاصلهي اوليه و دورهي تناوب ساختمانها و نيز رفتار مصالح، بيشينهي نيروي ضربه ميتواند بين ساختمانهاي چپ و مياني و يا ساختمانهاي راست و مياني رخ دهد. 3- در حالت خطي و تحت پالس عمود بر گسل با بزرگاي 5، 6، و7، بيشينهي نيروي ضربهي قابل انتظار بهترتيب برابر 10، 58، و 100 مگانيوتن و كمينهي فاصلهي لازم جهت جلوگيري از ضربه بهترتيب برابر 10، 30، و 50 سانتيمتر است. 4- در حالت غيرخطي، بيشينهي نيروي ضربهي قابل انتظار بهترتيب برابر 10، 40، و 45 مگانيوتن و كمينهي فاصلهي لازم جهت جلوگيري از ضربه بهترتيب برابر 10، 20، و 30 سانتيمتر است.
چكيده لاتين :
In this investigation, a simple model of building in series, including 3-, 2-, and 3-story adjacent buildings, excited by the horizontal and vertical components of fault-normal pulse and fault-parallel displacement with different magnitudes and time lags, is considered. Each story of the buildings consists of a rigid beam connected to two axially rigid mass-less columns by nonlinear rotational springs and linear rotational dashpots. To determine the pounding force, the non-linear viscoelastic model was chosen. The ground motion was described by fault-normal pulse and fault-parallel permanent displacement, and their amplitudes and duration were selected consistent with the variables that described near-fault motions. An important physical characteristic of the selected pulse and displacement is large initial velocity associated with onset of these motions, and it is proportional to the stress drop on the fault. It is assumed that the buildings are near the fault, and that the longitudinal axis of the buildings (x-axis) coincides with the radial direction (r-axis) of the propagation of waves from the earthquake source, so the absolute displacements of the bases of columns are different due to the wave passage. The system of equations of motion was solved by the fourth-order Runge-Kutta method due to its self-starting feature and the long-range stability. For the considered model, the results indicate: (1) impact force can lead to increasing the maximum storey shear force. This amplification can be seen predominantly in exterior or end buildings which experience one-sided impacts, compared with interior building which experiences two-sided impacts; (2) by increasing initial gap size, the maximum impact force will not decrease necessarily. Depending on the period of buildings, initial gap size, and material nonlinearity, the maximum impact force can occur between the left and middle buildings or between the middle and right buildings; (3) for linear material under fault-normal pulse with magnitudes 5, 6, and 7, the expected maximum impact force and the minimum distance required to avoid pounding would be equal to 10, 58, 100 MN, and 10, 30, 50 cm, respectively; (4) for nonlinear material, the corresponding values would be equal to 10, 40, 45 MN, and 10, 20, 30 cm, respectively.