شماره ركورد :
950726
عنوان مقاله :
اثر متقابل شوري و آلودگي كادميم بر كادميم قابل جذب، تنفس و زيست¬توده ميكروبي در يك خاك آهكي تيمار شده با بقاياي گياهي
عنوان فرعي :
Interactive Effects of Salinity and Cadmium Pollution on Microbial Respiration and Biomass in a Calcareous Soil Treated with Plant Residue
پديد آورنده :
صادقی الهام
پديد آورندگان :
رئیسی فایز نويسنده استاد گروه علوم و مهندسی خاك، دانشگاه شهركرد، شهركرد، ایران raiesi fayez , حسین پور علیرضا نويسنده استاد گروه علوم و مهندسی خاك، دانشگاه شهركرد، شهركرد، ایران Hosseinpour Alireza
سازمان :
دانش¬آموخته كارشناسی ارشد گروه علوم و مهندسی خاك، دانشگاه شهركرد، شهركرد، ایران
اطلاعات موجودي :
دو ماهنامه سال 1396 شماره 0
تعداد صفحه :
14
از صفحه :
1623
تا صفحه :
1636
كليدواژه :
آلودگي , اثر متقابل , تنفس ميكروبي , زيست¬توده ميكروبي , زيست¬فراهمي فلز , شوري
چكيده فارسي :
خاك به عنوان یكی از اجزای اكوسیستم، محیط رشد گیاه و زیستگاه موجودات زنده متنوع با انواع تنش¬های زیستی روبه¬رو است. اگر چه اثرات منفرد تنش¬های شوری و آلودگی بر فعالیت¬های زیستی خاك عموماً شناخته شده است ولی اثر مشترك این دو تنش بر رشد، جمعیت و فعالیت موجودات زنده خاك مورد توجه قرار نگرفته است. هدف این تحقیق مطالعه اثر متقابل و یا مشترك تنش¬های شوری و آلودگی كادمیم بر كادمیم قابل جذب، تنفس و زیست¬توده میكروبی و ضریب متابولیكی در یك خاك آهكی آلوده تیمار شده با بقایای گیاهی طی سه ماه انكوباسیون بود. آزمایش به صورت فاكتوریل (دو سطح كادمیم، سه سطح شوری و دو سطح تیمار بقایای گیاهی) در قالب طرح كاملاً تصادفی در چهار تكرار و در شرایط آزمایشگاهی اجرا گردید. نتایج نشان داد افزایش سطح شوری باعث افزایش غلظت كادمیم قابل جذب، كاهش تنفس و كربن زیست¬توده میكروبی و همزمان افزایش ضریب ویژه تنفسی خاك گردید. مصرف بقایای گیاهی آثار منفی شوری و آلودگی را بر تنفس و كربن زیست¬توده میكروبی كاهش داد به گونه¬ای كه در خاك¬های تیمار نشده با بقایای گیاهی اثرات متقابل این دو تنش اثرات منفی همدیگر را تشدید نموده ولی در خاك¬های تیمار شده با بقایای گیاهی اثرات منفی تعدیل شده بود. این نشان می¬دهد در خاك¬های شور و آلوده با محدودیت كربن، افزایش سطح ماده آلی خاك افزایش غلظت كادمیم قابل جذب ناشی از شوری خاك را كاهش و در نتیجه از اثر بازدارنده شوری بر فعالیت و جمعیت میكروبی می¬كاهد.
چكيده لاتين :
Introduction: Soil, as an important component of terrestrial ecosystems, plant growth media, and a habitat of diverse living organisms commonly encounters a variety of abiotic stresses. Soil microorganisms play an important role in maintaining soil quality and functioning, since they are responsible for the decomposition of dead organic material, nutrient cycling and degradation of hazardous organic pollutants. Metal toxicity and salinity are the major abiotic stresses affecting soil microbial activity and community structure in many areas of the world, in particular arid regions. Anthropogenic activities have increased the concentration of heavy metals and soluble salts in soil, resulting in a major constrain for soil microbial performance and functions. Furthermore, soil microbial activity and biochemical processes are often limited by substrate availability in arid areas due to the low organic inputs. Although the individual effects of salinity and metal toxicity stresses on soil biological activity are generally well-known, their combined effects on microbial growth, population and functions are largely uncertain. The main aim of this study was to investigate the interactive effects of salinity and cadmium (Cd) Pollution on microbial respiration and biomass in a calcareous soil treated with plant residue. It was hypothesized that salinity would increase mobility and availability of Cd with subsequent reductions in microbial activity and biomass, and that addition of plant residue would modify these salinity effects. Materials and Methods: This study was conducted under controlled laboratory conditions at Shahrekord University. A factorial experiment with two levels of cadmium (0 and 30 mg kg-1), three levels of salinity (1.35, 7.5 and 10 dS m-1) and two levels of plant residue (with and without alfalfa residue) was conducted using a completely randomized design with four replications. Using cadmium chloride salt, the soil was contaminated, and subsequently amended with alfalfa residue (1%, w/w). After thorough mixing of soil and plant residue, salinity treatments were applied using NaCl salt. To reactivate the microbial population and for the aging effect, soil moisture was set at 70% of field capacity, and containers were pre-incubated at room temperature for 4 weeks. The samples were then incubated at 25±1 oC for 98 days. Soil carbon (C) mineralization (microbial respiration) was measured weekly, and available Cd and microbial biomass C were measured at monthly intervals. In this experiment, the Bliss independence model was used to determine the type and nature of the interaction between salinity and pollution (synergistic and antagonistic). Results and Discussion: The results showed that NaCl salinity increased the concentration of soil available Cd in both polluted and unpolluted soils over the experimental period, and the increases were greater at high than low salinity levels. This effect of salinity was less pronounced in residue-amended and unamended soils. In general, a strong synergistic effect of both stresses upon Cd availability was observed in residue-unamended soils while this effect was mostly antagonistic in residue-amended soils. This indicates that addition of plant residue to enhance soil organic matter may indirectly repress or lower salinity effect on Cd toxicity. Soil salinity decreased microbial biomass C and respiration with subsequent increases in specific respiratory quotient due to the increases in Cd solubility and availability. However, the changes in microbial properties were much lower in residue-amended and unamended soils. Addition of plant residue decreased the negative effects of both the individual and combined salinity and Cd pollution on microbial biomass and respiration. The interactive effect of these two stresses was mainly synergistic in residue-treated soils while it was antagonistic in residue-untreated soils. Overall, a strong synergistic effect occurred when both stresses were combined in the absence of plant residue while this effect was antagonistic in the presence of plant residue. Conclusion: This study provided evidence that salinity could synergistically increase the mobility, bio-availability, and toxicity of Cd in Cd-polluted soils with C limitation. This was reflected by synergistic reductions in soil microbial biomass and respiration. However, addition of plant residue to increase soil organic matter lowered this effect of salinity, resulting in the antagonistic effects of salinity and pollution on soil microbial biomass and respiration. The reason for increase in the microbial activity in soils treated with plant residue was the increase of available substrate. As a result, using the plant residue increased the stimulatory effect of microbial activity. These findings point to the importance of providing adequate organic residues to enhance soil microbial performance and agricultural sustainability in polluted soils under salinity stress. However, further information on responses of microbial indicators to the joint effect of salinity and Cd toxicity is required. Materials and Methods: This study was conducted under controlled laboratory conditions at Shahrekord University. A factorial experiment with two levels of cadmium (0 and 30 mg kg-1), three levels of salinity (1.35, 7.5 and 10 dS m-1) and two levels of plant residue (with and without alfalfa residue) was conducted using a completely randomized design with four replications. Using cadmium chloride salt, the soil was contaminated, and subsequently amended with alfalfa residue (1%, w/w). After thorough mixing of soil and plant residue, salinity treatments were applied using NaCl salt. To reactivate the microbial population and for the aging effect, soil moisture was set at 70% of field capacity, and containers were pre-incubated at room temperature for 4 weeks. Next, the samples were incubated at 25±1 oC for 98 days. Soil C mineralization (microbial respiration) was measured weekly, and available Cd and microbial biomass carbon were measured at monthly intervals. In this experiment, the Bliss independence model was used to determine the type and nature of the interaction between salinity and pollution (synergistic and antagonistic). Results and Discussion: The results showed that NaCl salinity increased the concentration of soil available Cd in both polluted and unpolluted soils over the experimental period, and the increases were greater at high than low salinity levels. This effect of salinity was less pronounced in residue-amended and unamended soils. In general, a strong synergistic effect of both stresses was observed on Cd availability in residue-unamended soils while this effect was mostly antagonistic in residue-amended soils. This indicates addition of plant residue to enhance soil organic matter may indirectly repress or lower salinity effect on Cd toxicity. Soil salinity decreased microbial biomass carbon and respiration with subsequent increases in specific respiratory quotient due to the increases in Cd solubility and availability. However, the changes in microbial properties were much lower in residue-amended and unamended soils. Addition of plant residue decreased the negative effects of both the individual and combined salinity and Cd pollution on microbial biomass and respiration. The interactive effect of these two stresses was mainly synergistic in residue-treated soils while it was antagonistic in residue-untreated soils. Overall, a strong synergistic effect occurred when both stresses were combined in the absence of plant residue while this effect was antagonistic in the presence of plant residue. Conclusions: This study provided evidence that salinity could synergistically increase the mobility, bio-availability, and toxicity of soil Cd in Cd-polluted soils with carbon limitation. This was reflected by synergistic reductions in soil microbial biomass and respiration. However, addition of plant residue to increase soil organic matter lowered this effect of salinity, resulting in the antagonistic effects of salinity and pollution on soil microbial biomass and respiration. The reason for increase in the microbial activity in soils treated with plant residue was the increase of available substrate. As a result, using the plant residue increased the stimulatory effect of microbial activity. These findings point to the importance of providing adequate organic residues to enhance soil microbial performance and agricultural sustainability in polluted soils under salinity stress. However, further information on responses of microbial indicators to the joint effect of salinity and Cd toxicity is required.
سال انتشار :
1396
عنوان نشريه :
آب و خاك
عنوان نشريه :
آب و خاك
اطلاعات موجودي :
دوماهنامه با شماره پیاپی 0 سال 1396
لينک به اين مدرک :
بازگشت